
1/4

October 21, 2011

The PSN_SETACTIVE notification is sent each time your
wizard page is activated

devblogs.microsoft.com/oldnewthing/20111021-00

Raymond Chen

A customer had received a number of crashes via
Windows Error Reporting
and believed that

they had found a bug in the tree view common control.

In our UI, we have a tree view with checkboxes.
The tree view displays a fixed item at the top,
followed by a variable number of dynamic items.
When the user clicks Next,
we look at the tree
view to determine what the user selected.
The code goes like this (pseudo):

htiRoot = GetTreeRoot();

// First process the fixed item

htiFixed = GetChild(htiRoot);

if (IsTreeViewItemChecked(htiFixed)) {

 .. add the fixed item ...

}

// Now process the dynamic items

hti = GetNextSibling(htiFixed);

while (hti != NULL) {

 if (IsTreeViewItemChecked(hti)) {

 ... add the dynamic item ...

 }

 hti = GetNextSibling(hti);

}

In the crashes we receive, other variables in the
program indicate that there should be only one
dynamic item,
but our loop iterates multiple times.
Furthermore, the first time through the loop,
the hItem is not the handle to the first
dynamic item but is in fact the handle to the fixed
item.
This naturally results in a crash when we try to treat the fixed item
as if it were a dynamic
item.

Another thing we noticed is that at the time of the crash,
all three variables htiRoot
htiFixed ,
and
 hti have the same value.

Our attempts to reproduce the problem in-house have been
unsuccessful.
From our analysis, we
believe that the tree view APIs used to
obtain handles to children and sibling nodes are
misbehaving.

https://devblogs.microsoft.com/oldnewthing/20111021-00/?p=9323
http://www.microsoft.com/whdc/maintain/StartWER.mspx

2/4

The customer included the crash bucket number,
so we were able to connect to the same

crash dumps that the customer
was looking at.

The first thing to dismiss was the remark that all three of
the local variables had the same

value.
This is to be expected since they have non-overlapping lifetimes,
and the compiler

decided to alias them all to each other to save
memory.

...

 lea eax,[ebp+8] ; htiRoot

 push eax

 push 1 ; some flag

 push ebx ; some parameter

 call 00965fb9 ; GetTreeRoot

 mov [ebp-2Ch],eax

 test eax, eax

 jl 00971a49 ; failed - exit

 mov edi, [_imp__SendMessageW]

 push 4 ; TVGN_CHILD

 push 110Ah ; TVM_GETNEXTITEM

 push dword ptr [ebx+10h] ; window handle

 call edi ; SendMessage

 mov [ebp+8],eax ; htiFixed

 ... eliding if (IsTreeViewItemChecked(...)) ...

 jmp 00971a1c ; enter loop

00971931:

 ... eliding if (IsTreeViewItemChecked(...)) ...

00971a1c:

 push dword ptr [ebp+8] ; hti

 push 1 ; TVGN_NEXT

 push 110Ah ; TVM_GETNEXTITEM

 push dword ptr [ebx+10h] ; window handle

 call edi ; SendMessage

 mov [ebp+8],eax ; update hti

 test eax, eax ; hti == NULL?

 jne 00971931 ; N: continue loop

I’ve removed code not directly relevant to the discussion.
The point to see here is that the

compiler combined all three
variables into one physical memory location at
 [ebp+8]
since

there is no
point in the program where more than one of the values is needed
at a time.
In

other words, the compiler rewrote your code like this:

3/4

hti = GetTreeRoot();

hti = GetChild(hti);

if (IsTreeViewItemChecked(hti)) {

 .. add the fixed item ...

}

while ((hti = GetNextSibling(hti)) != NULL) {

 if (IsTreeViewItemChecked(hti)) {

 ... add the dynamic item ...

 }

}

Not only did the compiler merge all your hti
variables into one, it realized that once it did

that,
the two calls to GetNextSibling
could be folded together as well.

Okay, one mystery solved.
What about the others?

From studying the crash dump, the shell team determined that
the reason the first dynamic

item appears to be the fixed item
is that the tree view actually has two fixed items:

003d06d8 Root

+ 003d0a38 "Configuration settings"

+ 003d0888 "Configuration settings"

+ 003d07b0 "Saved game from May 27, 2009 at 2:42 PM (playing as Thor)"

+ 003d0600 "Saved game from May 27, 2009 at 2:42 PM (playing as Thor)"

“Configuration settings” is the fixed item, and the saved
games are the dynamic items.
(This

isn’t the actual scenario from the customer, but it
gets the point across.)
The customer was

wrong to use the definite article when referring
to the handle to
the fixed item, since there are

two fixed items here.
In a sense, the customer’s understanding that there is only
one fixed

item clouded their ability to debug the problem:
When they saw another fixed item, they

assumed not that they
received another item that was fixed,
but rather that they were getting

the same fixed item twice.

Seeing that the tree view was being populated twice
directed the next step of the

investigation: Why?

The code that populates the tree view is called from
the wizard page’s PSN_SETACTIVE

notification,
and that one piece of information was the last piece of the
puzzle.

The PSN_SETACTIVE notification is sent each time
the wizard or property sheet page is

selected as the current page.
If the page is activated twice, then you will get two
 PSN_SET‐

ACTIVE notifications.
The solution was to populate the tree view only the first
time the page

was activated.

Exercise: What was missing from the customer’s testing
that prevented them from

reproducing the problem in their labs?

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

