
1/6

October 3, 2011

Do not access the disk in your IContextMenu handler, no
really, don't do it

devblogs.microsoft.com/oldnewthing/20111003-00

Raymond Chen

We saw some time ago that
the number one cause of crashes in Explorer is malware.

It so happens that the number one cause of hangs in Explorer
is disk access from context

menu handlers
(a special case of the more general principle,
you can’t open the file until the

user tells you to open it).

That’s why I was amused by Memet’s claim that
“would hit the disk” is not acceptable for me.

The feedback I see from customers, either directly
from
large multinational corporations with

500ms ping times
or indirectly
from individual users who collectively click Send Report

millions of times a day,
is that “would hit the disk” ruins a lot of people’s days.
It may not be

acceptable to you, but millions of other people
would beg to disagree.

The Windows team tries very hard to identify unwanted disk accesses
in Explorer and get rid

of them.
We don’t get them all, but at least we try.
But if the unwanted disk access is coming

from a third-party add-on,
there isn’t much that can be done aside from saying,
“Don’t do

that” and hoping the vendor listens.

Every so often, a vendor will come back and ask for advice on avoiding
disk access in their

context menu handler.
There’s a lot of information packed into that data object that
contains

information gathered from when the disk was accessed originally.
You can just retrieve that

cached data instead of going off and
hitting the disk again to recalculate it.

I’m going to use a boring console application and the clipboard
rather than building a full

IContextMenu ,
since the purpose here is to show how to get data from a data object

without hitting the disk and not to delve into the details of
 IContextMenu implementation.

https://devblogs.microsoft.com/oldnewthing/20111003-00/?p=9493
http://blogs.msdn.com/b/oldnewthing/archive/2008/05/21/8525411.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2009/04/15/9549682.aspx
http://blogs.msdn.com/oldnewthing/archive/2009/10/05/9903476.aspx#9904591
http://blogs.msdn.com/b/oldnewthing/archive/2009/05/28/9645162.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/08/04/10045651.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/01/11/350628.aspx#350903

2/6

#define UNICODE

#define _UNICODE

#include <windows.h>

#include <ole2.h>

#include <shlobj.h>

#include <propkey.h>

#include <tchar.h>

void ProcessDataObject(IDataObject *pdto)

{

... to be written ...

}

int __cdecl _tmain(int argc, PTSTR *argv)

{

if (SUCCEEDED(OleInitialize(NULL))) {

 IDataObject *pdto;

 if (SUCCEEDED(OleGetClipboard(&pdto))) {

 ProcessDataObject(pdto);

 pdto->Release();

 }

 OleUninitialize();

}
}

Okay, let’s say that we want to check that all the items
on the clipboard are files and not

directories.
The HDROP way of doing this would be to get
the path to each of the items in the

data object,
then call GetFileAttributes on each one to see
if any of them has the

FILE_ATTRIBUTE_DIRECTORY flag set.
But this hits the disk, which makes baby context

menu host sad.
Fortunately, the IShellItemArray interface provides
an easy way to check

whether any or all the items in a data object
have a particular attribute.

void ProcessDataObject(IDataObject *pdto)

{

IShellItemArray *psia;

HRESULT hr;

hr = SHCreateShellItemArrayFromDataObject(pdto,

 IID_PPV_ARGS(&psia));

if (SUCCEEDED(hr)) {

 SFGAOF sfgaoResult;

 hr = psia->GetAttributes(SIATTRIBFLAGS_OR, SFGAO_FOLDER,

 &sfgaoResult);

 if (hr == S_OK) {

 _tprintf(TEXT("Contains a folder\n"));

 } else if (hr == S_FALSE) {

 _tprintf(TEXT("Contains no folders\n"));

 }

 psia->Release();

}
}

http://blogs.msdn.com/b/oldnewthing/archive/2004/02/12/71851.aspx

3/6

In this case, we want to see if any item
(SIATTRIBFLAGS_OR)
in the data object has
the

SFGAO_FOLDER attribute.
The IShellItemArray::GetAttributes
method returns
 S_OK

if all of the attributes you requested
are present in the result.
Since we asked for only one

attribute, and since we asked for
the result to be the logical or of the individual attributes,

this means that it returns S_OK if any item is a folder.

Okay, fine, but what if the thing you want to know is not expressible
as a SFGAO flag?
Well,

you can dig into each of the individual items.
For example, suppose we want to see the size of

each item.

#include <strsafe.h>

void ProcessDroppedObject(IDataObject *pdto)

{

IShellItemArray *psia;

HRESULT hr;

hr = SHCreateShellItemArrayFromDataObject(pdto,

 IID_PPV_ARGS(&psia));

if (SUCCEEDED(hr)) {

 IEnumShellItems *pesi;

 hr = psia->EnumItems(&pesi);

 if (SUCCEEDED(hr)) {

 IShellItem *psi;

 while (pesi->Next(1, &psi, NULL) == S_OK) {

 IShellItem2 *psi2;

 hr = psi->QueryInterface(IID_PPV_ARGS(&psi2));

 if (SUCCEEDED(hr)) {

 ULONGLONG ullSize;

 hr = psi2->GetUInt64(PKEY_Size, &ullSize);

 if (SUCCEEDED(hr)) {

 _tprintf(TEXT("Item size is %I64u\n"), ullSize);

 }

 psi2->Release();

 }

 psi->Release();

 }

 }

 psia->Release();

}
}

I went for IEnumShellItems here,
even though a for loop
with IShellItem‐

Array::GetCount and
 IShellItemArray::GetItemAt
would have worked, too.

File system items in data objects cache a bunch of useful pieces
of information, such as the

last-modified time, file creation time,
last-access time,
the file size,
the file attributes, and the

file name (both long and short).
Of course, all of these properties are subject to file system

support.
the shell just takes what’s in the WIN32_FIND_DATA ;
if the values are incorrect
(for

example, if last-access time tracking is disabled),
then the shell is going to cache the incorrect

4/6

value.
But don’t say, “Well, if the cache is no good, then I won’t use it;
I’ll just go hit the disk”,

because if you hit the disk,
the file system is going to give you the same incorrect value

anyway!

If you just want to order the combo platter, you can ask for
PKEY_FindData, and out will

come a
 WIN32_FIND_DATA .
This might be the easiest way to convert your old-style context

menu
that hits the disk into a new-style context menu that doesn’t hit the
disk:
Take your

calls to
 GetFileAttributes and
 FindFirstFile
and convert them into calls into the

property system,
asking for PKEY_FileAttributes or
 PKEY_FindData .

Okay, that’s the convenient modern way to get information that has
been cached in the data

object provided by the shell.
What if you’re an old-school programmer?
Then you get to roll

up your sleeves and get your hands dirty with
the CFSTR_SHELLIDLIST
clipboard format.

(And if your target is Windows XP or earlier,
you have to do it this way since the
 IShell‐

ItemArray interface
was not introduced until Windows Vista.)
In fact, the CFSTR_SHELLID‐

LIST
clipboard format will get your hands so dirty,
I’m writing a helper class to manage it.

First, go back and familiarize yourself with
the CIDA structure.

http://msdn.microsoft.com/library/bb760709.aspx
http://msdn.microsoft.com/library/bb773212.aspx

5/6

// these should look familiar

#define HIDA_GetPIDLFolder(pida) (LPCITEMIDLIST)(((LPBYTE)pida)+(pida)->aoffset[0])

#define HIDA_GetPIDLItem(pida, i) (LPCITEMIDLIST)(((LPBYTE)pida)+(pida)-
>aoffset[i+1])

void ProcessDataObject(IDataObject *pdto)

{

FORMATETC fmte = {

 (CLIPFORMAT)RegisterClipboardFormat(CFSTR_SHELLIDLIST),

 NULL, DVASPECT_CONTENT, -1, TYMED_HGLOBAL };

STGMEDIUM stm = { 0 }; // defend against buggy data object

HRESULT hr = pdto->GetData(&fmte, &stm);

if (SUCCEEDED(hr) && stm.hGlobal != NULL) {

 LPIDA pida = (LPIDA)GlobalLock(stm.hGlobal);

 if (pida != NULL) { // defend against buggy data object

 IShellFolder *psfRoot;

 hr = SHBindToObject(NULL, HIDA_GetPIDLFolder(pida), NULL,

 IID_PPV_ARGS(&psfRoot));

 if (SUCCEEDED(hr)) {

 for (UINT i = 0; i < pida->cidl; i++) {

 IShellFolder2 *psf2;

 PCUITEMID_CHILD pidl;

 hr = SHBindToFolderIDListParent(psfRoot,

 HIDA_GetPIDLItem(pida, i),

 IID_PPV_ARGS(&psf2), &pidl);

 if (SUCCEEDED(hr)) {

 VARIANT vt;

 if (SUCCEEDED(psf2->GetDetailsEx(pidl, &PKEY_Size, &vt))) {

 if (SUCCEEDED(VariantChangeType(&vt, &vt, 0, VT_UI8))) {

 _tprintf(TEXT("Item size is %I64u\n"), vt.ullVal);

 }

 VariantClear(&vt);

 }

 psf2->Release();

 }

 }

 psfRoot->Release();

 }

 GlobalUnlock(stm.hGlobal);

 }

 ReleaseStgMedium(&stm);

}
}

I warned you it was going to be ugly.

First, we retrieve the CFSTR_SHELLIDLIST clipboard
format from the data object.
This

format takes the form of an HGLOBAL ,
which needs to be GlobalLock ‘d
like all HGLOBAL s

returned by IDataObject::GetData .
You may notice two defensive measures here.
First,

there is a defense against data objects which return
success when they actually failed.
To

detect this case, we zero out the STGMEDIUM and
make sure they returned something non-

NULL in it.
The second defensive measure is against data objects which
put an invalid

6/6

HGLOBAL in the STGMEDIUM .
One of the nice things about doing things the
 IShellItem‐

Array way is that the shell default
implementation of IShellItemArray has all these

defensive measures built-in so you don’t have to write them yourself.

Anyway, once we get the CIDA ,
we bind to the folder portion, walk through the items,
and

get the size of each item in order to print it.
Same story, different words.

Exercise: Why did we need a separate defensive measure
for data objects which returned

success but left garbage in the
 STGMEDIUM ?
Why doesn’t the GlobalLock test cover that

case, too?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

