
1/2

September 28, 2011

Does this operation work when impersonating? The
default answer is NO

devblogs.microsoft.com/oldnewthing/20110928-00

Raymond Chen

I’ll often see a customer ask for assistance with a scenario like this: “We’re having trouble

doing X. We’re doing X1, X2, and X3, but it looks like we’re getting the wrong answer back.”

The next step in the conversation goes something like “There must be something else going

on, because X1, X2 and X3 is the correct way of doing X. To demonstrate, I’ve written the

following sample program that illustrates doing X by the X1, X2, X3 technique. When I run it,

I get the correct answer. What do you get when you run it?”

“When we run your program we get the correct answer, but it doesn’t work when we do it

from our program.” And then, as if by afterthought, “Could the problem be that we’re

impersonating?”

Ohhhhhh, you’re impersonating. Thanks for not mentioning that.

By default, nothing works when impersonating. Impersonation requires end-to-end

awareness. A function might create a worker thread—the worker thread runs with the

identity of the process. A function might use a function like QueueUsereWorkItem —by

default, the work item runs with the identity of the process. (You have to pass WT_

TRANSFER_IMPERSONATION if you want the work item to respect impersonation.) A

function might send a message to another window—that window will do its work under its

own security token, not the token of the sender. A function might invoke a method on a

remote COM object—that object will run under its own security token, not the token of the

invoker. (COM requires you to call CoSetProxyBlanket to enable impersonation transfer

during marshaling, and the server needs to call CoImpersonateClient . For some reason,

this is called cloaking.) The registry keys HKEY_CURRENT_USER and HKEY_CLASSES_ROOT

don’t work when you’re impersonating. (You have to use RegOpenCurrentUser or

RegOpenUserClassesRoot.) Functions like SHGetKnownFolderPath have a token

parameter which is used when impersonating; if you pass NULL , then it assumes you aren’t

impersonating.

https://devblogs.microsoft.com/oldnewthing/20110928-00/?p=9533
http://msdn.microsoft.com/library/ms683778.aspx
http://msdn.microsoft.com/library/ms724836.aspx

2/2

The requirements go beyond just code that runs during the execution of the function in

question. If you have a function which caches information across calls, the cache needs to be

made impersonation-aware so that a value calculated when called while impersonating

user X isn’t mistakenly used while impersonating user Y.

In order for impersonation to work, every function all the way down the chain needs to be

impersonation-safe. Sure, you might be careful to call QueueUserWorkItem with the

WT_TRANSFER_IMPERSONATION flag, and your work item is careful to call

SetProxyBlanket on its COM objects, and your COM server is careful to call

CoImpersonateClient when servicing the call, but if your COM server then calls a helper

object which calls SHGetKnownFolderPath and passes NULL for the impersonation token,

then all your careful work has been for naught.

This is another special case of When you create an object with constraints, you have to make

sure everybody who uses the object understands those constraints.

The Programming Golden Rule can be applied here as well: When you write your own code,

do you do this? Since most people who write code do not think about impersonation (indeed,

the operating system even encourages not-impersonation-safe coding when it provides

conveniences like HKEY_CURRENT_USER) the default answer to “Does this work when I’m

impersonating” is “No.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20100414-00/?p=14333
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

