
1/3

September 26, 2011

Sending a window a WM_DESTROY message is like
prank calling somebody pretending to be the police

devblogs.microsoft.com/oldnewthing/20110926-00

Raymond Chen

A customer was trying to track down a memory leak in their program.
Their leak tracking

tool produced the stacks which allocated memory
that was never freed, and they all seemed

to come from
 uxtheme.dll , which is a DLL that comes with Windows.
The customer

naturally contacted Microsoft to report what appeared
to be a memory leak in Windows.

I was one of the people who investigated this case,
and the customer was able to narrow

down
the scenario which was triggering the leak.
Eventually, I tracked it down.
First, here’s

the thread that caused the leak:

DWORD CALLBACK ThreadProc(void *lpParameter)

{

...

// This CreateWindow caused uxtheme to allocate some memory

HWND hwnd = CreateWindow(...);

RememberWorkerWindow(hwnd);

MSG msg;

while (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

}
return 0;

}

This thread creates an invisible window whose job is to
do something until it is destroyed, at

which point
the thread is no longer needed.
The window procedure for the window looks like

this:

https://devblogs.microsoft.com/oldnewthing/20110926-00/?p=9553

2/3

LRESULT CALLBACK WndProc(HWND hwnd, UINT uMsg,

 WPARAM wParam, LPARAM lParam)

{

...

switch (uMsg) {

... business logic deleted ...

case WM_DESTROY:

 ForgetWorkerWindow(hwnd);

 PostQuitMessage(0);

 break;

...

}
return DefWindowProc(hwnd, uMsg, wParam, lParam);

}

Sinec this is the main window on the thread,
its destruction posts a quit message to signal the

message
loop to exit.

There’s nothing obviously wrong here that would cause uxtheme
to leak memory.
And yet it

does.
The memory is allocated when the window is created,
and it’s supposed to be freed

when the window is destroyed.
And the only time we exit the message loop is when the

window
is destroyed.
So how is it that this thread manages to exit without destroying the

window?

The key is how the program signals this window that it should go away.

void MakeWorkerGoAway()

{

// Find the worker window if it is registered

HWND hwnd = GetWorkerWindow();

// If we have one, destroy it

if (hwnd) {

 // DestroyWindow doesn't work for windows that belong

 // to other threads.

 // DestroyWindow(hwnd);

 SendMessage(hwnd, WM_DESTROY, 0, 0);

}
}

The authors of this code first tried destroying the window
with DestroyWindow but ran into

the problem that
you cannot destroy a window that belongs to a different thread.
“But aha,

since the DestroyWindow function sends
the WM_DESTROY message, we can just cut out the

middle man and send the message directly.”

Well, yeah, you can do that, but that doesn’t actually destroy
the window.
It just pretends to

destroy the window by prank-calling
the window procedure and saying
“Ahem, um, yeah, this

is the, um, window manager?
(stifled laughter)
And, um, like, we’re just calling you to tell

you, um,
you’re being destroyed.
(giggle)
So, um, you should like pack up your bags and

(snort)
sell all your furniture!
(raucous laughter)”

3/3

The window manager sends the WM_DESTROY message
to a window as part of the window

destruction process.
If you send the message yourself, then you’re making the window think

that it’s being destroyed, even though it isn’t.
(Because it’s DestroyWindow that destroys

windows.)

The victim window procedure goes through its
“Oh dear, I’m being destroyed, I guess I’d

better clean up my stuff”
logic, and in this case, it unregisters the worker window and
posts a

quit message to the message loop.
The message loop picks up the WM_QUIT and exits the

thread.

And that’s the memory leak:
The thread exited before all its windows were destroyed.
That

worker window is still there, because it never got
 DestroyWindow ‘d.
Since the window

wasn’t actually destroyed, the internal memory
used to keep track of the window didn’t get

freed, and there you have
your leak.

“You just got punk’d!”

The correct solution is for the MakeWorkerGoAway
function to send a message to the worker

window to tell it,
“Hey, I’d like you to go away.
Please call DestroyWindow on yourself.”
You

can invent a private message for this,
or you can take advantage of the fact that the
default

behavior of the WM_CLOSE message
is to destroy the window.
Since our window procedure

doesn’t override WM_CLOSE ,
the message will fall through to DefWindowProc
which will

convert the WM_CLOSE into a DestroyWindow .

Now that you understand the difference between destroying a window
and prank-calling a

window telling it is being destroyed,
you might be able to
help Arno with his problem.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2007/05/23/407234.aspx#443420
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

