
1/2

September 22, 2011

Why does my single-byte write take forever?
devblogs.microsoft.com/oldnewthing/20110922-00

Raymond Chen

A customer found that a single-byte write was taking several seconds,
even though the write

was to a file on the local hard drive that was
fully spun-up.
Here’s the pseudocode:

// Create a new file - returns quickly

hFile = CreateFile(..., CREATE_NEW, ...);

// make the file 1GB

SetFilePointer(hFile, 1024*1024*1024, NULL, FILE_BEGIN);

SetEndOfFile(hFile);

// Write 1 byte into the middle of the file

SetFilePointer(hFile, 512*1024*1024, NULL, FILE_BEGIN);

BYTE b = 42;

/ this write call takes several seconds!

WriteFile(hFile, &b, &nBytesWritten, NULL);


The customer experimented with using asynchronous I/O,
but it didn’t help.
The write still

took a long time.
Even using FILE_FLAG_NO_BUFFERING 
(and
writing full sectors, naturally)

didn’t help.

The reason is that on NTFS, extending a file reserves disk space but
does not zero out the

data.
Instead, NTFS keeps track of the “last byte written”,
technically known as the
valid data

length,
and only zeroes out up to that point.
The data past the valid data length
are logically

zero but are not
physically zero on disk.
When you write to a point past the current valid data

length,
all the bytes between the valid data length and the start of
your write need to be

zeroed out before the new valid data length
can be set to the end of your write operation.

(You can manipulate the valid data length directly with
the SetFileValidData function,
but

be very careful since it comes with serious security implications.)

Two solutions were proposed to the customer.

Option 1 is to force the file to be zeroed out immediately
after setting the end of file by writing

a zero byte to the end.
This front-loads the cost so that it doesn’t get imposed on
subsequent

writes at seemingly random points.

https://devblogs.microsoft.com/oldnewthing/20110922-00/?p=9573
http://blogs.msdn.com/b/oldnewthing/archive/2009/06/11/9725386.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/04/14/9995509.aspx
http://msdn.microsoft.com/library/aa365544.aspx


2/2

Option 2 is to
make the file sparse.
Mark the file as sparse with the
FSCTL_SET_SPARSE

control code,
and
immediately after setting the end of file,
use
the FSCTL_SET_ZERO_DATA

control code
to make the entire file sparse.
This logically fills the file with zeroes without

committing physical
disk space.
Anywhere you actually write gets converted from “sparse” to

“real”.
This does open the possibility that a later write into the middle
of the file will

encounter a disk-full error,
so it’s not a “just do this and you won’t have to worry about

anything” solution,
and depending on how randomly you convert the file from “sparse”
to

“real”, the file may end up more fragmented than it would have
been if you had “kept it real”

the whole time.

Raymond Chen

Follow







http://msdn.microsoft.com/library/aa365564.aspx
http://msdn.microsoft.com/library/aa364596.aspx
http://msdn.microsoft.com/library/aa364597.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

