
1/3

September 19, 2011

The clipboard viewer linked list is no longer the
responsibility of applications to maintain, unless they
want to

devblogs.microsoft.com/oldnewthing/20110919-00

Raymond Chen

Commenter
Nice Clipboard Manager (with drop->clipboard)
wonders
why Windows still

uses a linked list to inform programs about
clipboard modifications.
If any clipboard viewer

fails to maintain the chain,
then some windows won’t get informed of the change,
and if a

clipboard viewer creates a loop in the chain,
an infinite loop results.

Well, sure, that’s what happens if you use the old clipboard viewer
chain.
So don’t use it.
The

old clipboard viewer chain remains for backward compatibility,
but it’s hardly the best way to

monitor the clipboard.
(This is another example of people
asking for a feature that already

exists.)

Instead of using the clipboard viewer chain, just add yourself
as a clipboard format listener

via
 AddClipboardFormatListener .
Once you’ve done that, the system will post you a

WM_CLIPBOARDUPDATE message when the contents of the
clipboard have changed, and you

can respond accordingly.
When you’re done,
call RemoveClipboardFormatListener .

By using the clipboard format listener model, you
let Windows worry
about keeping track of

all the people who are monitoring the clipboard,
as Clipboarder Gadget suggested.
(Mind

you, Windows doesn’t go so far as making each clipboard viewer
think that it’s the only

viewer in the chain,
because there may be applications which break the chain on purpose.

Changing the chain behavior will break compatibility with those
applications.)

Let’s turn our
scratch program into a clipboard format listener.

https://devblogs.microsoft.com/oldnewthing/20110919-00/?p=9613
http://blogs.msdn.com/oldnewthing/archive/2010/05/10/10009448.aspx#10010459
http://blogs.msdn.com/b/oldnewthing/archive/2009/01/16/9322645.aspx#9330873
http://blogs.msdn.com/b/oldnewthing/archive/2010/07/20/10040074.aspx#10040587
http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx

2/3

void

SniffClipboardContents(HWND hwnd)

{

SetWindowText(hwnd, IsClipboardFormatAvailable(CF_TEXT)

 ? TEXT("Has text") : TEXT("No text"));

}

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

SniffClipboardContents(hwnd); // set initial title

return AddClipboardFormatListener(hwnd);

}

void

OnDestroy(HWND hwnd)

{

RemoveClipboardFormatListener(hwnd);

PostQuitMessage(0);

}

... add to window procedure ...

case WM_CLIPBOARDUPDATE: SniffClipboardContents(hwnd); break;

And that’s it.
Much, much simpler than writing a clipboard viewer,
and much more robust

since you aren’t dependent on other
applications not screwing up.

There’s another alternative to registering a clipboard listener
and that’s using the clipboard

sequence number.
The window manager increments the clipboard sequence number
each

time the contents of the clipboard change.
You can compare the sequence number from two

points in time to
determine whether the contents of the clipboard have changed while
you

weren’t looking.

Now you have a choice.
Do you use the notification method (clipboard format listener)
or the

polling method (clipboard sequence number)?
The notification method is recommended if

you want
to do something as soon as the clipboard contents change.
On the other hand, the

polling method is more suitable if you
perform calculations based on the clipboard contents

and cache
the results, and then later you want to verify that your
cached results are still valid.

For example, suppose you have a program with a Paste function,
and pasting from the

clipboard involves creating a complex
data structure based on the clipboard contents.
The

user clicks Paste, you create your complex data structure,
and insert it into the document.

Your research discovers that a common operation is pasting the same
contents several times.

To optimize this, you want to cache the complex data structure
so that if the user clicks Paste

five times in a row,
you only have to build the complex data structure the first time
and you

can just re-use it the other four times.

3/3

void DocumentWindow::OnPaste()

{

if (m_CachedClipboardData == NULL ||

 GetClipboardSequenceNumber() != m_SequenceNumberInCache) {

 delete m_CachedClipboardData;

 m_SequenceNumberInCache = GetClipboardSequenceNumber();

 m_CachedClipboardData = CreateComplexDataFromClipboard();

}
if (m_CachedClipboardData) Paste(m_CachedClipboardData);

}

When the OnPaste method is called,
we see if we have clipboard data cached from last time.

If not, then clearly we need to create our complex data
structure from the clipboard.
If we do

have clipboard data in our cache,
we see if the clipboard sequence number has changed.
If so,

then the cached data is no longer valid and we have
to throw it away and create it from

scratch.
But if we have cached data and the sequence number hasn’t changed,
then the cache

is still valid and we can avoid calling
 CreateComplexDataFromClipboard .

The old clipboard viewer is like DDE:
please feel free to stop using it.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2007/02/26/1763683.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

