
1/2

September 16, 2011

Why can't I PostMessage the WM_COPYDATA message,
but I can SendMessageTimeout it with a tiny timeout?

devblogs.microsoft.com/oldnewthing/20110916-00

Raymond Chen

After receiving the explanation of what happens to a sent message when SendMessage‐

Timeout reaches its timeout, a customer found that the explanation raised another question:

If the window manager waits until the receiving thread finishes processing the message, then

why can’t you post a WM_COPYDATA message? “After all, SendMessageTimeout with a very

short timeout isn’t all that different from PostMessage .”
Actually, SendMessageTimeout

with a very short timeout is completely different from PostMessage .
Let’s set aside the one

crucial difference that, unlike messages posted by PostMessage , which cannot be recalled,

the SendMessageTimeout function will cancel the message entirely if the receiving thread

does not process messages quickly enough.
Recall that messages posted to a queue via Post‐

Message are retrieved by the GetMessage function and placed in a MSG structure. Once

that’s done, the window manager disavows any knowledge of the message. It did its job: It

placed the message in the message queue and produced it when the thread requested the

next message in the queue. What the program does with the message is completely up in the

air. There’s no metaphysical requirement that the message be dispatched to its intended

recipient. (In fact, you already know of a common case where messages are “stolen” from

their intended recipients: Dialog boxes.)
In principle, the message pump could do anything it

wants to the message. Dispatch it immediately, steal the message, throw the message away,

eat the message and post a different message, even save the message in its pocket for a rainy

day.
By contrast, there’s nothing you can do to redirect inbound non-queued messages. They

always go directly to the window procedure.
The important difference from the standpoint of

messages like WM_COPYDATA is that with sent messages, the window manager knows when

message processing is complete: When the window procedure returns. At that time, it can

free the temporary buffers used to marshal the message from the sender to the recipient. If

the message were posted, the window manager would never be sure.
Suppose the message is

placed in a MSG structure as the result of a call to GetMessage . Now the window manager

knows that the receiving thread has the potential for taking action on the message and the

buffers need to be valid. But how would it know when the buffers can be freed? “Well you can

wait until the exact same parameters get passed in a MSG structure to the Dispatch‐

Message function.” But what if the message loop discards the message? Or what if it decides

to dispatch it twice? Or what if it decides to smuggle it inside another message?

https://devblogs.microsoft.com/oldnewthing/20110916-00/?p=9623
http://blogs.msdn.com/b/oldnewthing/archive/2011/09/15/10208975.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/04/26/412116.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/05/23/8535427.aspx
http://msdn.microsoft.com/bb774593.aspx

2/2

Posted messages have no guarantee of delivery nor do they provide any information as to

when the message has been definitely processed, or even if it has been processed at all. If the

window manager let you post a WM_COPYDATA message, it would have to use its psychic

powers to know when the memory can be freed.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

