
1/2

September 15, 2011

What happens to a sent message when
SendMessageTimeout reaches its timeout?

devblogs.microsoft.com/oldnewthing/20110915-00

Raymond Chen

The SendMessageTimeout function tries to send a message, but gives up if the timeout

elapses. What exactly happens when the timeout elapses?
It depends.
The first case is if the

receiving thread never received the message at all. (I.e., if during the period the sender is

waiting, the receiving thread never called GetMessage , PeekMessage , or a similar

message-retrieval function which dispatches inbound sent messages.) In that case, if the

timeout is reached, then the entire operation is canceled; the window manager cleans up

everything and makes it look as if the call to SendMessageTimeout never took place. The

message is removed from the list of the thread’s non-queued messages, and when it finally

gets around to calling GetMessage (or whatever), the message will not be delivered.
The

second case is if the receiving thread received the message, and the message was delivered to

the destination window procedure, but the receiving thread is just slow to process the

message and either return from its window procedure or call ReplyMessage . In that case, if

the timeout is reached, then the sender is released from waiting, but the message is allowed

to proceed to completion.
Since people seem to like tables, here’s a timeline showing the two

cases.

Sending thread Case 1 Case 2

SendMessageTimeout(WM_X)
called

… not responding … … not responding …

… not responding … … not responding …

… not responding … GetMessage() called

… not responding … WndProc(WM_X) called

… not responding … WndProc(WM_X) still
executing

timeout elapses … not responding … WndProc(WM_X) still
executing

https://devblogs.microsoft.com/oldnewthing/20110915-00/?p=9643

2/2

SendMessageTimeout(WM_X)
returns

… not responding … WndProc(WM_X) still
executing

… not responding … WndProc(WM_X) returns

GetMessage() called

(message WM_X not
received)

Notice that in case 2, the window manager has little choice but to let the window procedure

continue with the message. After all, time travel has yet to be perfected, so the window

manager can’t go back in time and tell the younger version of itself, (Possibly with a slow-

motion “Nooooooooooooo” for dramatic effect.) “No, don’t give him the message; he won’t

finish processing it in time!”
If you are in case 2 and the message WM_X is a system-defined

message that is subject to marshaling, then the data is not unmarshaled until the window

procedure returns. It would be bad to free the memory out from under a window procedure.

On the other hand, if the message is a custom message, then you are still on the hook for

keeping the values valid until the window procedure is done.

But wait, how do I know when the window procedure is done? The SendMessageTimeout

function doesn’t tell me! Yup, that’s right. If you need to do cleanup after message processing

is complete, you should use the SendMessageCallback function, which calls you back when

the receiving thread completes message processing. When the callback fires, that’s when you

do your cleanup.

Raymond Chen

Follow

https://www.youtube.com/watch?v=ZDkdD3jwAS4
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

