
1/5

September 7, 2011

Why is the registry a hierarchical database instead of a
relational one?

devblogs.microsoft.com/oldnewthing/20110907-00

Raymond Chen

Commenter ton asks
why the registry was defined as a hierarchical database instead of
a

relational database.

Heck, it’s not even a hierarchical database!

The original registry was just a dictionary;
i.e., a list of name/value pairs, accessed by name.

In other words, it was a flat database.

.txt txtfile

txtfile Text Document

txtfile\DefaultIcon notepad.exe,1

txtfile\shell open

txtfile\shell\open\command notepad %1

If you turned your head sideways and treated the backslashes as
node separators, you could

sort of trick yourself into believing
that this resulted in something vaguely approximating
a

hierarchical database,
and a really lame one at that (since each node held only one piece
of

data).

When you choose your data structures, you necessarily are guided
by the intended use

pattern and the engineering constraints.
One important engineering constraint was that you

have to minimize
memory consumption.
All of the registry code fit in 16KB of memory.

(Recall that Windows 3.1 had to run on machines with only 1MB of memory.)

Okay, what is the usage pattern of the registry?
As originally designed, the registry was for

recording information
about file types.
We have the file types themselves (txtfile),

properties about those file types (DefaultIcon),
verbs associated with those file types

(open),
and verb implementations (command or ddeexec).
Some verb implementations

https://devblogs.microsoft.com/oldnewthing/20110907-00/?p=9713
http://blogs.msdn.com/oldnewthing/archive/2009/02/05/9397154.aspx#9399358

2/5

are simple (command involves
just a single string describing the command line);
others are

complex (ddeexec requires the execute string,
the application, and the topic, plus an

optional alternate execute string).

Given a file type and a property, retrieve the value of that
property.

Given a file type and a verb, retrieve information about how to
perform that verb.

The set of properties can be extended.

The set of property schemata can be extended.

The set of verbs can be extended.

The set of verb implementations can be extended.

Since the properties and verb implementations can be extended,
you can’t come up with a

single schema that covers everything.
For example, over the years, new file type properties

have been
added such as ContentType ,
 OpenWithList ,
and ShellNew .
The first one is a

simple string;
the second is
a list of strings,
and the third
is
a complex key with multiple

variants.
Meanwhile, additional verb implementations have been added,
such as

DropTarget.

Given the heterogeneity of the data the registry needs to keep track of,
imposing some sort of

uniform schema is doomed to failure.

“But you can just update the schemata each time the registration is
extended.”

That creates its own problems.
For example, to support
roaming user profiles,
you need a

single registry hive to work on multiple versions of the
operating system.
If version N+1 adds

a new schema, but then the profile roams to a
machine running version N,
then that registry

hive will be interpreted as corrupted since it
contains data that matches no valid schema.

“Well, then include the schemata with the roaming profile so that
when the older operating

system sees the hive, it also sees the
updated schemata.”

This is trickier than it sounds, because when the profile roams to
the newer operating system,

you presumably want the schemata to be
upgraded and written back into the user profile.
It

also assumes that the versioning of the schemata is strictly linear.
(What if you roam a user

profile from a Windows XP machine
to a Server 2003 machine? Neither is a descendant of

the other.)

But what kills this proposal is that it makes it impossible for a program
to “pre-register”

properties for a future version of the operating system.
Suppose a new schema is added in

version N+1,
like, say, the IDropTarget verb implementation.
You write a program that you

want to run on version N as well as
on version N+1.
If your installer tries to register the

version N+1 information,
it will fail since there is no schema for it.
But that means that when

http://msdn.microsoft.com/bb166549.aspx
http://msdn.microsoft.com/cc144101.aspx#new
http://blogs.msdn.com/b/oldnewthing/archive/2010/05/03/10006065.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/06/30/434209.aspx

3/5

the user upgrades to version N+1,
they don’t get the benefit of the version N+1 feature.
In

order to get the version N+1 feature to work, they have to
reinstall the program so the

installer says,
“Oh, now I can register the version +1 information.”

“Well, then allow applications to install a new schema whenever
they need to.”

In other words, make it a total free-for-all.
In which case, why do you need a schema at all?

Just leave it as an unregulated collection of name/value pairs
governed by convention rather

than rigid rules,
as long as
the code which writes the information and the code which reads it

agree on the format of the information and where to look for it.

Hey, wow, that’s what the registry already is!

And besides, if you told somebody,
“Hi, yeah, in order to support looking up four pieces of

information about file types,
Windows 3.1 comes with a copy of
SQL Server,”
they would

think you were insane.
That’s like using a bazooka to kill a mosquito.

What are you planning on doing with this relational database anyway?
Are you thinking of

doing an INNER JOIN on the registry?
(Besides, the registry is already being abused enough

already.
Imagine if it were a SQL server: Everybody would store
all their data in it!)

ton explains one way applications could use this advanced functionality:

An application would have a table or group of tables
in relational style registry.
A group of
settings would be a row.
A single setting would be a column.
Is it starting to become clearer
now how SQL like statements
could now be used to constrain what gets deleted and added?
How good is your understanding of SQL and DBMS?

You know what most application authors would say?
They would say “Are you mad?
You’re

saying that I need to create a table with one column for each
setting?
And this table would

have a single row (since I have only one application)?
All this just so
I can save my window

position?
Screw it, I’m going back to INI files.”
What’ll happen in practice is that everybody

will create a table with
two columns,
a string called name and a blob called
 value .
Now

we’ve come full circle:
We have our flat database again.

And how would they make sure the name of their table doesn’t
collide with the name of a

table created by another application?
Probably by encoding the company name and

application name into
the name of the table, according to some agreed-upon convention.

Like say, the Settings table used by the LitSoft program
written by LitWare would be called

LitWare_LitSoft_Settings .
So querying a value from this table would go something like

SELECT value FROM PerUser.LitWare_LitSoft_Settings

 WHERE name = "WindowPosition"

Hey, this looks an awful lot like

http://blogs.msdn.com/oldnewthing/archive/2009/02/05/9397154.aspx#9400103
http://blogs.msdn.com/oldnewthing/archive/2003/09/12/54896.aspx

4/5

Registry.CurrentUser.OpenSubKey(@"LitWare\LitSoft\Settings")

 .GetValue("WindowPosition");

One of ton’s arguments for using a relational database is that
it permits enforcement of

referential integrity.
But I would argue that in the general case, you
don’t want
strict

enforcement of referential integrity.
Suppose you uninstall a program.
The uninstaller tries to

delete the program registration,
but that registration is being referenced by foreign keys in

other tables.
These references were not created by the application itself;
perhaps the shell

common dialog created them as part of its
internal bookkeeping.
If the registry blocked the

deletion, then the uninstall would fail.
“Cannot uninstall application
because there’s still a

reference to it somewhere.”
And that reference might be
in Bob’s user profile,
from that time

Bob said, “Hey can I log onto your machine quickly?
I need to look up something.”
Bob is

unlikely to come back to your machine any time soon,
so his user profile is just going to sit

there holding a reference
to that application you want to uninstall for an awfully long time.

“Hi, Bob, can you come by my office?
I need you to log on so I can uninstall an app.”

So let’s assume it goes the other way:
The registry automatically deletes orphaned foreign key

rows.
(And for hives that are not currently available, it just remembers
that those foreign key

rows should be deleted the next time they are loaded.
Nevermind that that list of “foreign key

rows that should be deleted
the next time Bob logs on” is going to get pretty long.)

Now suppose you’re uninstalling a program not because you want to
get rid of it, but because

you’re doing an uninstall/reinstall
troubleshooting step.
You uninstall the program, all the

orphaned foreign key rows are
automatically deleted, then you reinstall the program.
Those

orphaned foreign key rows are not undeleted; they remain deleted.
Result: You lost some

settings.
This is the reason why
you don’t clean up per-user data when uninstalling programs.

Enforcing referential integrity also means that you can’t create
anticipatory references.
One

example of this was given earlier, where you register something
on version N even though the

feature doesn’t get activated
until the user upgrades to version N+1.
More generally,

Program X may want to create a reference to
Program Y at installation,
even if program Y

isn’t installed yet.
(For example, X is a Web browser and Y is a popular plug-in.)
The

Program Y features remain dormant, because the attempt by
Program X to access Program Y

will fail,
but once the user installs Program Y,
then the Program Y features are magically

“turned on”
in Program X.

Consider, as an even more specific example, the “kill bit” database.
There, the goal isn’t to

“turn on” features of Program Y but
to turn them off.
Imagine if referential integrity were

enforced:
You couldn’t kill an ActiveX control until after it was installed!

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2007/09/17/4948130.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

