
1/6

September 1, 2011

Invoking commands on items in the Recycle Bin
devblogs.microsoft.com/oldnewthing/20110901-00

Raymond Chen

Once you’ve found the items you want in the Recycle Bin,
you may want to perform some

operation on them.
This brings us back to our old friend,
 IContextMenu .
At this point,

you’re just
snapping two blocks together.
You have one block called
Retrieving properties

from items in the Recycle Bin
and you have another block called
Invoking verbs on items.

For the first block,
let’s assume you’ve written a function called
 WantToRestoreThisItem

which studies the properties
of a Recycle Bin item and determines whether you want to

restore it.
I leave this for you to implement,
since I don’t know what your criteria are.
Maybe

you want to restore files only if they were deleted from a
particular directory.
Maybe you

want to restore files that were deleted while
you were drunk.
(This assumes you have some

other computer program that tracks
when you’re drunk.)¹
Whatever.
It’s your function.

For the second block, we have a helper function which
should look awfully familiar.

void InvokeVerb(IContextMenu *pcm, PCSTR pszVerb)

{

HMENU hmenu = CreatePopupMenu();

if (hmenu) {

 HRESULT hr = pcm->QueryContextMenu(hmenu, 0, 1, 0x7FFF, CMF_NORMAL);

 if(SUCCEEDED(hr)) {

 CMINVOKECOMMANDINFO info = { 0 };

 info.cbSize = sizeof(info);

 info.lpVerb = pszVerb;

 pcm->InvokeCommand(&info);

 }

 DestroyMenu(hmenu);

}
}

And now we snap the two blocks together.

https://devblogs.microsoft.com/oldnewthing/20110901-00/?p=9753
http://blogs.msdn.com/oldnewthing/archive/2009/08/04/9856634.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/09/20/231739.aspx

2/6

int __cdecl _tmain(int argc, PTSTR *argv)

{

HRESULT hr = CoInitialize(NULL);

if (SUCCEEDED(hr)) {

 IShellItem *psiRecycleBin;

 hr = SHGetKnownFolderItem(FOLDERID_RecycleBinFolder, KF_FLAG_DEFAULT,

 NULL, IID_PPV_ARGS(&psiRecycleBin));

 if (SUCCEEDED(hr)) {

 IEnumShellItems *pesi;

 hr = psiRecycleBin->BindToHandler(NULL, BHID_EnumItems,

 IID_PPV_ARGS(&pesi));

 if (hr == S_OK) {

 IShellItem *psi;

 while (pesi->Next(1, &psi, NULL) == S_OK) {

 if (WantToRestoreThisItem(psi)) {

 IContextMenu *pcm;

 hr = psi->BindToHandler(NULL, BHID_SFUIObject,

 IID_PPV_ARGS(&pcm));

 if (SUCCEEDED(hr)) {

 InvokeVerb(pcm, "undelete");

 pcm->Release();

 }

 }

 psi->Release();

 }

 }

 psiRecycleBin->Release();

 }

 CoUninitialize();

}
return 0;

}

One annoyance of the Recycle Bin is that, at least up until Windows 7,
it ignores the

CMIC_MASK_FLAG_NO_UI flag.
It always displays a confirmation dialog if something

dangerous is about
to happen (like overwriting an existing file).
To mitigate this problem, we

can at least reduce the number of confirmations
from one-per-file to just one by batching up

all the objects we want
to operate on into a single context menu.
For this, it’s easier to go

back to the classical version of the program.

3/6

int __cdecl _tmain(int argc, PTSTR *argv)

{

HRESULT hr = CoInitialize(NULL);

if (SUCCEEDED(hr)) {

 IShellFolder2 *psfRecycleBin;

 hr = BindToCsidl(CSIDL_BITBUCKET, IID_PPV_ARGS(&psfRecycleBin));

 if (SUCCEEDED(hr)) {

 IEnumIDList *peidl;

 hr = psfRecycleBin->EnumObjects(NULL,

 SHCONTF_FOLDERS | SHCONTF_NONFOLDERS, &peidl);

 if (hr == S_OK) {

 // in a real program you wouldn't hard-code a fixed limit

 PITEMID_CHILD rgpidlItems[100];

 UINT cpidlItems = 0;

 PITEMID_CHILD pidlItem;

 while (peidl->Next(1, &pidlItem, NULL) == S_OK) {

 if (WantToRestoreThisItem(psfRecycleBin, pidlItem) &&

 cpidlItems < ARRAYSIZE(rgpidlItems)) {

 rgpidlItems[cpidlItems++] = pidlItem;

 } else {

 CoTaskMemFree(pidlItem);

 }

 }

 // restore the items we collected

 if (cpidlItems) {

 IContextMenu *pcm;

 hr = psfRecycleBin->GetUIObjectOf(NULL, cpidlItems,

 (PCUITEMID_CHILD_ARRAY)rgpidlItems,

 IID_IContextMenu, NULL, (void**)&pcm);

 if (SUCCEEDED(hr)) {

 InvokeVerb(pcm, "undelete");

 pcm->Release();

 }

 for (UINT i = 0; i < cpidlItems; i++) {

 CoTaskMemFree(rgpidlItems[i]);

 }

 }

 }

 psfRecycleBin->Release();

 }

 CoUninitialize();

}
return 0;

}

In the course of the enumeration, we save the ITEMIDLIST s
of all the items we want to

restore, then create one giant context menu
for all of them.
This is the programmatic

equivalent of multi-selecting the items from
the Recycle Bin and then right-clicking.
We then

invoke the undelete verb on the entire group.

4/6

Okay, so now suppose you want to restore the files, but instead of
restoring them to their

original locations, you want to restore them
to a special folder.
Like, say, C:\Files I deleted

while I was drunk.¹
No problem.
We just need a different block to snap into:
The drag/drop

block.

void DropOnRestoreFolder(IDataObject *pdto)

{

IDropTarget *pdt;

if (SUCCEEDED(GetUIObjectOfFile(NULL,

 L"C:\\Files I deleted while I was drunk",

 IID_PPV_ARGS(&pdt)))) {

 POINTL pt = { 0, 0 };

 DWORD dwEffect = DROPEFFECT_MOVE;

 if (SUCCEEDED(pdt->DragEnter(pdto, MK_LBUTTON,

 pt, &dwEffect))) {

 dwEffect &= DROPEFFECT_MOVE;

 if (dwEffect) {

 pdt->Drop(pdto, MK_LBUTTON, pt, &dwEffect);

 } else {

 pdt->DragLeave();

 }

 }

 pdt->Release();

}
}

And now it’s just a matter of
snapping out the undelete block and
snapping in the drag/drop

block.

http://blogs.msdn.com/b/oldnewthing/archive/2008/07/24/8768095.aspx

5/6

int __cdecl _tmain(int argc, PTSTR *argv)

{

HRESULT hr = CoInitialize(NULL);

if (SUCCEEDED(hr)) {

 IShellFolder2 *psfRecycleBin;

 hr = BindToCsidl(CSIDL_BITBUCKET, IID_PPV_ARGS(&psfRecycleBin));

 if (SUCCEEDED(hr)) {

 IEnumIDList *peidl;

 hr = psfRecycleBin->EnumObjects(NULL,

 SHCONTF_FOLDERS | SHCONTF_NONFOLDERS, &peidl);

 if (hr == S_OK) {

 // in a real program you wouldn't hard-code a fixed limit

 PITEMID_CHILD rgpidlItems[100];

 UINT cpidlItems = 0;

 PITEMID_CHILD pidlItem;

 while (peidl->Next(1, &pidlItem, NULL) == S_OK) {

 if (WantToRestoreThisItem(psfRecycleBin, pidlItem) &&

 cpidlItems < ARRAYSIZE(rgpidlItems)) {

 rgpidlItems[cpidlItems++] = pidlItem;

 } else {

 CoTaskMemFree(pidlItem);

 }

 }

 // restore the items we collected

 if (cpidlItems) {

 IDataObject *pdto;

 hr = psfRecycleBin->GetUIObjectOf(NULL, cpidlItems,

 (PCUITEMID_CHILD_ARRAY)rgpidlItems,

 IID_IDataObject, NULL, (void**)&pdto);

 if (SUCCEEDED(hr)) {

 DropOnRestoreFolder(pdto);

 pdto->Release();

 }

 for (UINT i = 0; i < cpidlItems; i++) {

 CoTaskMemFree(rgpidlItems[i]);

 }

 }

 }

 psfRecycleBin->Release();

 }

 CoUninitialize();

}
return 0;

}

Footnotes

¹ If being drunk isn’t your thing, then
substitute some other form of impaired judgment.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

6/6

