
1/5

August 30, 2011

How can I get information about the items in the Recycle
Bin?

devblogs.microsoft.com/oldnewthing/20110830-00

Raymond Chen

For some reason, a lot of people are interested in programmatic
access to the contents of the

Recycle Bin.
They never explain why they care,
so it’s possible that they are looking at their

problem the wrong way.

For example, one reason for asking,
“How do I purge an item from the Recycle Bin given a

path?”
is that
some operation in their program results in the files going
into the Recycle Bin

and they want them to be deleted entirely.
The correct solution is to clear the FOF_ALLOW‐

UNDO flag
when deleting the items in the first place.
Moving to the Recycle Bin and then

purging is the wrong solution because
your search-and-destroy mission may purge more

items than just the
ones your program put there.

The Recycle Bin is somewhat strange in that it can have multiple items
with the same name.

Create a text file called TEST.TXT on your desktop,
then delete it into the Recycle Bin.

Create another text file called TEST.TXT on your desktop,
then delete it into the Recycle

Bin.
Now open your Recycle Bin.
Hey look, you have two TEST.TXT files with the same

path!

Now look at that original problem:
Suppose the program, as part of some operation, moves

the file TEST.TXT from the desktop to the Recycle Bin,
and then the second half of the

program goes into the Recycle Bin,
finds TEST.TXT and purges it.
Well, there are actually

three copies of TEST.TXT in the
Recycle Bin, and only one of them is the one you wanted to

purge.

Okay, I got kind of sidetracked there.
Back to the issue of getting information about the items

in the
Recycle Bin.

The Recycle Bin is a shell folder,
and the way to enumerate the contents of a shell folder is to

bind to it and enumerate its contents.
The low-level interface to the shell namespace is via

IShellFolder .
There is an easier-to-use medium-level interface based on
 IShellItem ,

and there’s a high-level interface based on Folder
designed for scripting.

https://devblogs.microsoft.com/oldnewthing/20110830-00/?p=9773

2/5

I’ll start with the low-level interface.
As usual, the program starts with a bunch of header

files.

#include <windows.h>

#include <stdio.h>

#include <tchar.h>

#include <shlobj.h>

#include <shlwapi.h>

#include <propkey.h>

The BindToCsidl function binds to a folder specified
by a CSIDL .
The modern way to do

this is via KNOWNFOLDER ,
but just to keep you old fogeys happy, I’m doing things the
classic

way since you refuse to upgrade from Windows XP.
(We’ll look at the modern way later.)

HRESULT BindToCsidl(int csidl, REFIID riid, void **ppv)

{

HRESULT hr;

PIDLIST_ABSOLUTE pidl;

hr = SHGetSpecialFolderLocation(NULL, csidl, &pidl);

if (SUCCEEDED(hr)) {

 IShellFolder *psfDesktop;

 hr = SHGetDesktopFolder(&psfDesktop);

 if (SUCCEEDED(hr)) {

 if (pidl->mkid.cb) {

 hr = psfDesktop->BindToObject(pidl, NULL, riid, ppv);

 } else {

 hr = psfDesktop->QueryInterface(riid, ppv);

 }

 psfDesktop->Release();

 }

 CoTaskMemFree(pidl);

}
return hr;

}

The subtlety here is in the test for pidl->mkid.cb .
The IShellFolder::BindToObject

method is for binding
to child objects (or grandchildren or deeper descendants).
If the object

you want is the desktop itself, then you can’t use
 IShellFolder::BindToObject
since the

desktop is not
a child of itself.
In fact, if the object you want is the desktop itself,
then you

already have the desktop,
so we just QueryInterface for it.
It’s an annoying special case

which usually lurks in your code
until somebody tries something like “Save file to desktop”
or

changes the location of a special folder to the desktop,
and then
boom you trip over the fact

that the desktop is not a child of itself.
(See further discussion below.)

Another helper function prints the display name of a shell namespace item.
There isn’t much

interesting here either.

3/5

void PrintDisplayName(IShellFolder *psf,

 PCUITEMID_CHILD pidl, SHGDNF uFlags, PCTSTR pszLabel)

{

STRRET sr;

HRESULT hr = psf->GetDisplayNameOf(pidl, uFlags, &sr);

if (SUCCEEDED(hr)) {

 PTSTR pszName;

 hr = StrRetToStr(&sr, pidl, &pszName);

 if (SUCCEEDED(hr)) {

 _tprintf(TEXT("%s = %s\n"), pszLabel, pszName);

 CoTaskMemFree(pszName);

 }

}
}

Our last helper function retrieves a property from the shell namespace
and prints it.

(Obviously, if we wanted to do something other than print it,
we could coerce the type to

something other than VT_BSTR .)

void PrintDetail(IShellFolder2 *psf, PCUITEMID_CHILD pidl,

 const SHCOLUMNID *pscid, PCTSTR pszLabel)

{

VARIANT vt;

HRESULT hr = psf->GetDetailsEx(pidl, pscid, &vt);

if (SUCCEEDED(hr)) {

 hr = VariantChangeType(&vt, &vt, 0, VT_BSTR);

 if (SUCCEEDED(hr)) {

 _tprintf(TEXT("%s: %ws\n"), pszLabel, V_BSTR(&vt));

 }

 VariantClear(&vt);

}
}

Okay, now we can get down to business.
The properties we will display from each item in the

Recycle Bin
are the item name and path,
the original location (before the item was deleted),

the date the item was deleted,
and the size of the item.

Getting the name and path are done with
various combinations of flags to
 IShell‐

Folder::GetDisplayNameOf ,
whereas getting the other properties involve talking to the

shell property system.
(My colleague
Ben Karas
covers the
shell property system on his blog.)

The
SHCOLUMNID documentation
says that the displaced property set applies to items which

have been
moved to the Recycle Bin,
so we can define those column IDs based on the values

provided in
 shlguid.h :

const SHCOLUMNID SCID_OriginalLocation =

 { PSGUID_DISPLACED, PID_DISPLACED_FROM };

const SHCOLUMNID SCID_DateDeleted =

 { PSGUID_DISPLACED, PID_DISPLACED_DATE };

http://blogs.msdn.com/oldnewthing/archive/2004/08/23/218837.aspx
http://blogs.msdn.com/benkaras/
http://blogs.msdn.com/benkaras/archive/tags/Property+System/default.aspx
http://msdn.microsoft.com/en-us/library/bb759748(VS.85).aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/08/29/10201372.aspx

4/5

The other property we want is
System.Size,
which the documentation says is defined as

PKEY_Size by the
 propkey.h header file.

Okay, let’s roll!

int __cdecl _tmain(int argc, PTSTR *argv)

{

HRESULT hr = CoInitialize(NULL);

if (SUCCEEDED(hr)) {

 IShellFolder2 *psfRecycleBin;

 hr = BindToCsidl(CSIDL_BITBUCKET, IID_PPV_ARGS(&psfRecycleBin));

 if (SUCCEEDED(hr)) {

 IEnumIDList *peidl;

 hr = psfRecycleBin->EnumObjects(NULL,

 SHCONTF_FOLDERS | SHCONTF_NONFOLDERS, &peidl);

 if (hr == S_OK) {

 PITEMID_CHILD pidlItem;

 while (peidl->Next(1, &pidlItem, NULL) == S_OK) {

 _tprintf(TEXT("------------------\n"));

 PrintDisplayName(psfRecycleBin, pidlItem,

 SHGDN_INFOLDER, TEXT("InFolder"));

 PrintDisplayName(psfRecycleBin, pidlItem,

 SHGDN_NORMAL, TEXT("Normal"));

 PrintDisplayName(psfRecycleBin, pidlItem,

 SHGDN_FORPARSING, TEXT("ForParsing"));

 PrintDetail(psfRecycleBin, pidlItem,

 &SCID_OriginalLocation, TEXT("Original Location"));

 PrintDetail(psfRecycleBin, pidlItem,

 &SCID_DateDeleted, TEXT("Date deleted"));

 PrintDetail(psfRecycleBin, pidlItem,

 &PKEY_Size, TEXT("Size"));

 CoTaskMemFree(pidlItem);

 }

 }

 psfRecycleBin->Release();

 }

 CoUninitialize();

}
return 0;

}

The only tricky part is the test for whether the call to
 IShellFolder::EnumObjects

succeeded,
highlighted above.
According to
the rules for
IShellFolder::EnumObjects,
the

method is allowed to
return S_FALSE to indicate that there are no
children, in which case it

sets peidl to NULL .

If you are willing to call functions new to Windows Vista,
you can simplify the BindToCsidl

function
by using the helper function SHBindToObject .
This does the work of getting the

desktop folder and handling the
desktop special case.

http://msdn.microsoft.com/en-us/library/bb787566(VS.85).aspx
http://blogs.msdn.com/oldnewthing/archive/2010/04/02/9989235.aspx
http://msdn.microsoft.com/en-us/library/bb775066(VS.85).aspx

5/5

HRESULT BindToCsidl(int csidl, REFIID riid, void **ppv)

{

HRESULT hr;

PIDLIST_ABSOLUTE pidl;

hr = SHGetSpecialFolderLocation(NULL, csidl, &pidl);

if (SUCCEEDED(hr)) {

 hr = SHBindToObject(NULL, pidl, NULL, riid, ppv);

 CoTaskMemFree(pidl);

}
return hr;

}

But at this point, I’m starting to steal from the topic I scheduled
for next time, namely

modernizing this program to take advantage of
some new helper functions and interfaces.

We’ll continue next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

