
1/3

August 25, 2011

Stupid command-line trick: Counting the number of lines
in stdin

devblogs.microsoft.com/oldnewthing/20110825-00

Raymond Chen

On unix, you can use wc -l to count the number of lines
in stdin.
Windows doesn’t come

with wc ,
but there’s a sneaky way to count the number of lines anyway:

some-command-that-generates-output | find /c /v ""

It is a special quirk of the find command
that the null string is treated as never matching.

The /v flag reverses the sense of the test,
so now it matches everything.
And the /c flag

returns the count.

It’s pretty convoluted, but it does work.

(Remember, I provide the occasional tip on
batch file programming as a public service to

those forced to endure it,
not as an endorsement of batch file programming.)

Now come da history:
Why does the find command say that a null string matches
nothing?

Mathematically, the null string is a substring of every string,
so it should be that if you search

for the null string, it matches
everything.
The reason dates back to the original MS-DOS

version of find.exe ,
which according to the comments appears to have been written
in

1982.
And back then, pretty much all of MS-DOS was written in assembly
language.
(If you

look at your old MS-DOS floppies, you’ll find that
 find.exe is under 7KB in size.)
Here is

the relevant code, though I’ve done some editing to get rid of
distractions like DBCS support.

https://devblogs.microsoft.com/oldnewthing/20110825-00/?p=9803

2/3

 mov dx,st_length ;length of the string arg.

 dec dx ;adjust for later use

 mov di, line_buffer

lop:

 inc dx

 mov si,offset st_buffer ;pointer to beg. of string argument

comp_next_char:

 lodsb

 cmp al,byte ptr [di]

 jnz no_match

 dec dx

 jz a_matchk ; no chars left: a match!

 call next_char ; updates di

 jc no_match ; end of line reached

 jmp comp_next_char ; loop if chars left in arg.

If you’re rusty on your 8086 assembly language,
here’s how it goes in pseudocode:

int dx = st_length - 1;

char *di = line_buffer;

lop:

dx++;

char *si = st_buffer;

comp_next_char:

char al = *si++;

if (al != *di) goto no_match;

if (--dx == 0) goto a_matchk;

if (!next_char(&di)) goto no_match;

goto comp_next_char;

In sort-of-C, the code looks like this:

int l = st_length - 1;

char *line = line_buffer;

l++;

char *string = st_buffer;

while (*string++ == *line && --l && next_char(&line)) {}

The weird - 1 followed by l++ is an artifact
of code that I deleted, which needed the

decremented value.
If you prefer, you can look at the code this way:

int l = st_length;

char *line = line_buffer;

char *string = st_buffer;

while (*string++ == *line && --l && next_char(&line)) {}

Notice that if the string length is zero, there is an integer
underflow, and we end up reading

off the end of the buffers.
The comparison loop does stop, because we eventually
hit bytes

that don’t match.
(No virtual memory here, so there is no page fault when you
run off the end

of a buffer; you just keep going and reading
from other parts of your data segment.)

3/3

In other words, due to an integer underflow bug, a string of length zero
was treated as if it

were a string of length 65536, which doesn’t
match anywhere in the file.

This bug couldn’t be fixed,
because by the time you got around to
trying, there were already

people who discovered this behavior
and wrote batch files that relied on it.
The bug became a

feature.

The integer underflow was fixed, but the code is careful
to treat null strings as never

matching, in order to preserve
existing behavior.

Exercise: Why is the loop label called lop
instead of loop ?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

