
1/2

August 19, 2011

Why are the alignment requirements for SLIST_ENTRY so
different on 64-bit Windows?

devblogs.microsoft.com/oldnewthing/20110819-00

Raymond Chen

The InterlockedPushEntrySList function stipulates that all list items must be aligned on

a MEMORY_ALLOCATION_ALIGNMENT boundary. For 32-bit Windows,

MEMORY_ALLOCATION_ALIGNMENT is 8, but the SLIST_ENTRY structure itself does not have

a DECLSPEC_ALIGN(8) attribute. Even more confusingly, the documentation for

SLIST_ENTRY says that the 64-bit structure needs to be 16-byte aligned but says nothing

about the 32-bit structure. So what are the memory alignment requirements for a 32-bit

SLIST_ENTRY , 8 or 4?
It’s 8. No, 4. No wait, it’s both.
Officially, the alignment requirement

is 8. Earlier versions of the header file did not stipulate 8-byte alignment, and changing the

declaration would have resulted in existing structures which (inadvertently) misaligned the

field changing size and layout when the new requirement was imposed. So the 32-bit

structure was sort-of grandfathered in. You should still align it on 8-byte boundaries, but the

header file doesn’t enforce it to avoid breaking existing code.
Fortunately, when the 64-bit

version was introduced, the proper alignment directive was introduced right off the bat. How

about that: sometimes Microsoft learns from its mistakes after all.
Why are the alignment

requirements greater than the natural word size? To avoid the ABA problem. A standard

workaround for the ABA problem is to append additional information (a “tag”) to the pointer

so that when the value changes from B back to A, the tag ensures that the second A still looks

different from the first one. Many CPU architectures have a “double-pointer-sized atomic

compare-and-swap” instruction, and some of them have the additional requirement that the

double-pointer needs to be on a double-pointer boundary (8 bytes for 32-bit pointers and 16

bytes for 64-bit pointers).
“But wait, the double-pointer compare-and-swap is used on the

SLIST_HEADER , not on the SLIST_ENTRY . Why does the SLIST_ENTRY need to be double-

pointer aligned, too?”

While it’s true that many CPU architectures have a “double-pointer-sized atomic compare-

and-swap” instruction, some support only a “pointer-sized atomic compare-and-swap”. For

example, the original AMD64 architecture did not have a CMPXCHG16B instruction; the

largest data size for an atomic compare-and-swap was 8 bytes. As a result, the Slist functions

https://devblogs.microsoft.com/oldnewthing/20110819-00/?p=9853
http://msdn.microsoft.com/ms684020.aspx
http://msdn.microsoft.com/dd852148.aspx
http://en.wikipedia.org/wiki/ABA_problem
http://en.wikipedia.org/wiki/X86-64#Older_implementations

2/2

need to pack a 64-bit pointer, a list depth, and tag information into a single 64-bit value. One

of the tricks they used was imposing a memory alignment of 16 bytes. This freed up four bits

in the pointer for use as a tag.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

