
1/4

August 11, 2011

The ways people mess up IUnknown::QueryInterface,
episode 4

devblogs.microsoft.com/oldnewthing/20110811-00

Raymond Chen

One of the rules for IUnknown::QueryInterface is so
obvious that nobody even bothers to

state it explicitly as a rule:
“If somebody asks you for an interface,
and you return S_OK ,

then the pointer you return must point to the interface the caller
requested.”
(This feels like

the software version of
dumb warning labels.)

During compatibility testing for Windows Vista,
we found a shell extension that behaved

rather strangely.
Eventually, the problem was traced to
a broken IUnknown::Query‐

Interface
implementation which depended subtly on the order in which
interfaces were

queried.

The shell asked for the IExtractIconA and
 IExtractIconW interfaces in the following

order:

// not the actual code but it gets the point across

IExtractIconA *pxia;

IExtractIconW *pxiw;

punk->QueryInterface(IID_IExtractIconA, &pxia);

punk->QueryInterface(IID_IExtractIconW, &pxiw);

One particular shell extension would return the same pointer to
both queries;
i.e.,
after the

above code executed,
 pxia == pxiw even though neither interface
derived from the other.

The two interfaces are not binary-compatible,
because IExtractIconA::GetIconLocation

operates on ANSI strings, whereas
 IExtractIconW::GetIconLocation operates
on

Unicode strings.

The shell called pxiw->GetIconLocation ,
but the object interpreted the szIconFile as

an ANSI string buffer; as a result, when the shell went to look at it,
it saw gibberish.

Further experimentation revealed that if the order of the two
 QueryInterface calls were

reversed,
then pxiw->GetIconLocation worked as expected.
In other words,
the first

interface you requested “locked” the object into that
interface, and asking for any other

https://devblogs.microsoft.com/oldnewthing/20110811-00/?p=9923
http://www.amazon.com/dp/0743244753?tag=tholneth-20

2/4

interface just returned
a pointer to the locked interface.
This struck me as very odd; coding

up the object this way
seems to be harder than doing it the right way!

// this code is wrong - see discussion above

class CShellExtension : public IExtractIcon

{

enum { MODE_UNKNOWN, MODE_ANSI, MODE_UNICODE };

 HRESULT CShellExtension::QueryInterface(REFIID riid, void **ppv)

 {

 *ppv = NULL;

 if (riid == IID_IUnknown) *ppv = this;

 else if (riid == IID_IExtractIconA) {

 if (m_mode == MODE_UNKNOWN) m_mode = MODE_ANSI;

 *ppv = this;

 } else if (riid == IID_IExtractIconW) {

 if (m_mode == MODE_UNKNOWN) m_mode = MODE_UNICODE;

 *ppv = this;

 }

 if (*ppv) AddRef();

 return *ppv ? S_OK : E_NOINTERFACE;

 }

 ... AddRef / Release ...

 HRESULT GetIconLocation(UINT uFlags, LPTSTR szIconFile, UINT cchMax,

 int *piIndex, UINT *pwFlags)

 {

 if (m_mode == MODE_ANSI) lstrcpynA((char*)szIconFile, "foo", cchMax);

 else lstrcpynW((WCHAR*)szIconFile, L"foo", cchMax);

 ...

 }

 ...

}

Instead of implementing both IExtractIconA and
 IExtractIconW , my guess is that they

implemented
just one of the interfaces and made it alter its behavior based
on which

interface it thinks it needs to pretend to be.
It never occurred to them that the single interface

might need
to pretend to be two different things at the same time.

The right way of supporting two interfaces is to actually implement
two interfaces and not

write a single morphing interface.

3/4

class CShellExtension : public IExtractIconA, public IExtractIconW

{

 HRESULT CShellExtension::QueryInterface(REFIID riid, void **ppv)

 {

 *ppv = NULL;

 if (riid == IID_IUnknown ||

 riid == IID_IExtractIconA) {

 ppv = static_cast<IExtractIconA>(this);

 } else if (riid == IID_IExtractIconW) {

 ppv = static_cast<IExtractIconW>(this);

 }

 if (*ppv) AddRef();

 return *ppv ? S_OK : E_NOINTERFACE;

 }

 ... AddRef / Release ...

 HRESULT GetIconLocation(UINT uFlags, LPSTR szIconFile, UINT cchMax,

 int *piIndex, UINT *pwFlags)

 {

 lstrcpynA(szIconFile, "foo", cchMax);

 return GetIconLocationCommon(uFlags, piIndex, pwFlags);

 }

 HRESULT GetIconLocation(UINT uFlags, LPWSTR szIconFile, UINT cchMax,

 int *piIndex, UINT *pwFlags)

 {

 lstrcpynW(szIconFile, L"foo", cchMax);

 return GetIconLocationCommon(uFlags, piIndex, pwFlags);

 }

 ...

}

We worked around this in the shell by simply changing the order
in which we perform the

calls to
 IUnknown::QueryInterface
and adding a comment explaining why the order of

the calls is important.

(This is another example of how the cost of a compatibility fix
is small potatoes.
The cost of

deciding whether or not to apply the fix far exceeds
the cost of just doing it for everybody.)

A different shell extension had a compatibility problem that also was
traced back to a

dependency on the order in which the shell
asked for interfaces.
The shell extension

registered as a context menu extension,
but when the shell tried to create it, it got E_NO‐

INTERFACE
back:

CoCreateInstance(CLSID_YourAwesomeExtension, NULL,

 CLSCTX_INPROC_SERVER, IID_IContextMenu, &pcm);

// returns E_NOINTERFACE?

This was kind of bizarre.
I mean, the shell extension went to the effort of registering itself
as a

context menu extension,
but when the shell said,
“Okay, it’s show time, let’s do the context

menu dance!”
it replied,
“Sorry, I don’t do that.”

http://blogs.msdn.com/oldnewthing/archive/2007/07/23/4003873.aspx
http://blogs.msdn.com/oldnewthing/archive/2010/01/11/9946339.aspx

4/4

The vendor explained that the shell extension relies
on the order in which the shell asked for

interfaces.
The shell used to create and initialize the extension like this:

// error checking and other random bookkeeping removed

IShellExtInit *psei;

IContextMenu *pcm;

CoCreateInstance(CLSID_YourAwesomeExtension, NULL,

 CLSCTX_INPROC_SERVER, IID_IShellExtInit, &psei);

psei->Initialize(...);

psei->QueryInterface(IID_IContextMenu, &pcm);

psei->Release();

// use pcm

We changed the order in a manner that you would think should be equivalent:

CoCreateInstance(CLSID_YourAwesomeExtension, NULL,

 CLSCTX_INPROC_SERVER, IID_IContextMenu, &pcm);

pcm->QueryInterface(IID_IShellExtInit, &psei);

psei->Initialize(...);

psei->Release();

(Of course, it’s not written in so many words in the code;
the various parts are spread out

over different components and
helper functions,
but this is the sequence of calls the shell

extension sees.)

The vendor explained that their shell extension will not respond
to any shell extension

interfaces (aside from
 IShellExtInit)
until it has been initialized,
because it is at that

point that they decide which extensions
they want to support.
Unfortunately, this violates the

first of the
four explicit rules for IUnknown::QueryInterface,
namely that the set of

interfaces must be static.
(It’s okay to have an object expose different interfaces
conditionally,

as long as it understands that once it says yes or no
to a particular interface,
it is committed

to answering the same way for the lifetime of the object.)

Raymond Chen

Follow

http://msdn.microsoft.com/ms682521.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

