
1/2

August 10, 2011

Slim reader/writer locks don't remember who the owners
are, so you'll have to find them some other way

devblogs.microsoft.com/oldnewthing/20110810-00

Raymond Chen

The
slim reader/writer lock
is a very convenient synchronization facility,
but one of the

downsides is that it doesn’t keep track of who
the current owners are.
When your thread is

stuck waiting to acquire a slim
reader/writer lock,
a natural thing to want to know is which

threads own the resource
your stuck thread waiting for.

Since there’s not facility for going from the waiting thread
to the owning threads,
you’ll just

have to find the owning threads some other way.
Here’s the thread that is waiting for the lock

in shared mode:

ntdll!ZwWaitForKeyedEvent+0xc

ntdll!RtlAcquireSRWLockShared+0x126

dbquery!CSearchSpace::Validate+0x10b

dbquery!CSearchSpace::DecomposeSearchSpace+0x3c

dbquery!CQuery::AddConfigs+0xdc

dbquery!CQuery::ResolveProviders+0x89

dbquery!CResults::CreateProviders+0x85

dbquery!CResults::GetProviders+0x61

dbquery!CResults::CreateResults+0x11c

Okay, how do you find the thread that owns the lock?

First, slim reader/writer locks are usable only within a process,
so the candidate threads are

the one within the process.

Second, the usage pattern for locks is nearly always something like

 enter lock

 do something

 exit lock

It is highly unusual for a function to take a lock and exit to
external code with the lock held.

(It might exit to other code within the same component,
transferring the obligation to exit

the lock to that other code.)
Therefore, you want to look for threads that are still inside

https://devblogs.microsoft.com/oldnewthing/20110810-00/?p=9933
http://msdn.microsoft.com/aa904937.aspx

2/2

dbquery.dll ,
possibly even still inside
 CSearchSpace (if the lock is a per-object lock

rather than a global one).

Of course, the possibility might be that the code that entered
the lock messed up and forgot

to release it,
but if that’s the case,
no amount of searching for it will find anything since the

culprit
is long gone.
Since
debugging is an exercise in optimism,
we may as well proceed on

the assumption that we’re not in the case.
If it fails to find the lock owner, then we may have

to revisit
the assumption.

Finally, the last trick is knowing
which threads to ignore.
For now, you can also ignore the

threads that are waiting for the lock,
since they are the victims not the cause.
(Again, if we fail

to find the lock owner, we can revisit the assumption
that they are not the cause; for example,

they may be attempting to acquire
the lock recursively.)

As it happens,
there is only one thread in the process that passes all the above filters.

dbquery!CProp::Marshall+0x3b

dbquery!CRequest::CRequest+0x24c

dbquery!CQuery::Execute+0x668

dbquery!CResults::FillParams+0x1c4

dbquery!CResults::AddProvider+0x4e

dbquery!CResults::AddConfigs+0x1c5

dbquery!CResults::CreateResults+0x145

This may not be the source of the problem, but it’s a good start.
(Actually, it looks very

promising since the problem is probably
that the process on the other side of the marshaller

is stuck.)

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2007/04/26/2277346.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/07/10/661389.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

