
1/2

August 8, 2011

What does the CreateProcess function do if there is no
space between the program name and the arguments?

devblogs.microsoft.com/oldnewthing/20110808-00

Raymond Chen

In an old discussion of
why the CreateProcess function modifies its command line,

commenter Random832 asked,
“What if there is no space between the program name and

arguments
– like “cmd/?” – where does it put the null then?”

The CreateProcess function requires a space between the
program name and arguments.

If you leave out the space, then the arguments are considered as part
of the program name

(and you’ll almost certainly get
 ERROR_FILE_NOT_FOUND back).

It sounds like Random832 has confused CreateProcess command
line parsing with

cmd.exe command line parsing.
Clearly the two parsers are different; you can see this even

without
playing with spaces between the program name and the arguments:

C:\>C:\Program Files\Windows NT\Accessories\wordpad.exe

'C:\Program' is not recognized as an internal or external command,

operable program or batch file.

If the command line had been parsed by CreateProcess ,
this would have succeeded in

running the Wordpad program,
because, as I noted in the original article,
the Create‐

Process function
modifies its command line in order to find
where the program name ends

and the command lines begin,
an example of which can be found
in the CreateProcess

documentation.
In this case, it would have plunked the null character into each
of the spaces

in the command line, finding that each one failed,
until it finally tried treating the entire

string as the program name,
at which point it would have succeeded.
The fact that it failed

demonstrates that CreateProcess
didn’t do the parsing.

The cmd.exe program permits the space between a program
name and its arguments to be

elided if the arguments begin with a character
not permitted in file names.
Once it figures out

what you’re running, and it determines that what
you’re running is a program,
it call the

CreateProcess function
with an explicit application and command line.

But you don’t have to take my word for it.
You can just see for yourself.
(In fact, this is exactly

what I did to investigate the issue
in the first place.)

https://devblogs.microsoft.com/oldnewthing/20110808-00/?p=9953
http://blogs.msdn.com/oldnewthing/archive/2009/06/01/9673254.aspx
http://blogs.msdn.com/oldnewthing/archive/2009/06/01/9673254.aspx#9701807
http://msdn.microsoft.com/ms682425.aspx

2/2

C:>ntsd -2 cmd.exe

Two windows will open, one for your debugger and one for cmd.exe .
(You are welcome to

replace ntsd with your favorite debugger.
I chose ntsd because—at least until

Windows XP—it
came preinstalled, thereby avoiding
multiplying the problem from one to

two.)

In the debugger, set a breakpoint on
 kernel32!CreateProcessW ,
then resume execution.

In the cmd.exe window, type cmd/? .
The breakpoint will fire, and you can look at the

parameters:

Breakpoint 0 hit

eax=0046f600 ebx=00000000 ecx=004f8de0 edx=00000000 esi=00000000 edi=00000001

eip=757820ba esp=0046f544 ebp=0046f704 iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246

kernel32!CreateProcessW:

757820ba 8bff mov edi,edi

0:000> dd esp l4

0046f544 4a5e3dd7 004f5420 004f8db0 00000000

0:000> du 004f5420

004f5420 "C:\Windows\system32\cmd.exe"

0:000> du 004f8db0

004f8db0 "cmd /?"

Observe that cmd.exe did its own manual path search
to arrive at an executable of

C:\Windows\system32\cmd.exe ,
and also that it secretly inserted a space between the

cmd and the slash.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2010/01/07/9944907.aspx#9945268
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

