
1/2

August 5, 2011

Menu item states are not reliable until they are shown
because they aren't needed until then

devblogs.microsoft.com/oldnewthing/20110805-00

Raymond Chen

A question arrived from a customer (with the rather unhelpful subject line Question for

Microsoft) wondering why, when they call GetSystemMenu and then ask for the states of the

various menu items like SC_MINIMIZE , the menu item states don’t reflect reality. The menu

item states don’t synchronize with reality until the user actually opens the system menu.

There is no requirement that applications keep menu item states continuously in sync. After

all, that’s why we have messages like WM_INITMENU : To tell the application, “Whoa, we’re

about to show this menu, so you might want to comb its hair and pick the food out of its teeth

so it can be seen by the user.” Lazy evaluation is common, because maintaining states

continuously can be expensive, and there’s no point constantly turning items on and of and

on and off if the user can’t see them anyway.
This is double-true for system menus, because

maintaining the states continuously is not possible when the system menu is being shared

across windows. The menu states are not synchronized to the window until the menu is about

to be displayed.
If you want to know whether the SC_MINIMIZE menu item would be

enabled if the menu were shown, you can check the window styles: A window can be

minimized if it has a WS_MINIMIZEBOX and is not already WS_MINIMIZE d. Similar logic can

be applied to the other menu items.
Well, except for SC_CLOSE . While in most cases the

window caption determines what is enabled on the menu, the Close button works backward:

It is the state of the menu item that controls whether the Close button is enabled. So in the

special case of SC_CLOSE , you can query the state at any time, because for that case, the

menu controls the state rather than simply reflecting it.
Why is SC_CLOSE so special? Here

come da history.
The Close button was added in Windows 95. Since versions of Windows

prior to Windows 95 didn’t have a Close button, they didn’t need a style to specify whether

the Close button should be enabled or not. (You don’t need a style to control something that

doesn’t exist.) Windows 95 added the Close button and hooked it up to the only thing that it

had available, namely, the SC_CLOSE item on the system menu. Sure, Windows 95 could

have have invented a new window style, but since SC_CLOSE already existed and

applications were already using it, using SC_CLOSE to control the Close button allowed old

applications to reap the benefits of the new Close button automatically. It also meant that

there was one less thing you had to change when porting your program to Windows 95.

https://devblogs.microsoft.com/oldnewthing/20110805-00/?p=9963
http://blogs.msdn.com/oldnewthing/archive/2007/01/22/1508494.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/05/28/10016691.aspx

2/2

Bonus chatter: You can now answer Alex Cohn’s question:

I wonder if the EnableMenuItem method will work for minimize and maximize, too. After all,
these buttons also have siblings in the Alt-space menu.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2010/06/04/10019758.aspx#10020458
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

