
1/2

August 3, 2011

A shell extension is a guest in someone else's house;
don't go changing the code page

devblogs.microsoft.com/oldnewthing/20110803-00

Raymond Chen

A customer reported a problem with their shell extension:

We want to format a floating point number according to the user’s default locale. We do this by
calling snprintf to convert the value from floating point to text with a period (U+002E) as
the decimal separator, then using GetNumberFormat to apply the user’s preferred grouping
character, decimal separator, etc. We found, however, that if the user is running in (say)
German, we find that sometimes (but not always) the snprintf function follows the German
locale and uses a comma (U+002C) as the decimal separator with no thousands separator. This
format prevents the GetNumberFormat function from working, since it requires the decimal
separator to be U+002E. What is the recommended way of formatting a floating point number
according to the user’s locale?

The recommended way of formatting a floating point number according to the user’s locale is

indeed to use a function like snprintf to convert it to text with U+002E as the decimal

separator (and other criteria), then use GetNumberFormat to apply the user’s locale

preferences.
The snprintf function follows the C/C++ runtime locale to determine how

the floating point number should be converted, and the default C runtime locale is the so-

called "C" locale which indeed uses U+002E as the decimal separator. Since you’re getting

U+002C as the decimal separator, somebody must have called setlocale to change the

locale from "C" to a German locale, most likely by passing "" as the locale, which means

“follow the locale of the environment.”

Our shell extension is running in Explorer. Under what conditions will Explorer call set‐
locale(LC_NUMERIC, "") ? What should we do if the locale is not "C" ?

As it happens, Explorer never calls setlocale . It leaves the locale set to the default value of

"C" . Therefore, the call to snprintf should have generated a string with U+002E as the

decimal separator. Determining who was calling setlocale was tricky since the problem

was intermittent, but after a lot of work, we found the culprit: some other shell extension

loaded before the customer’s shell extension and decided to change the carpet by calling

setlocale(LC_ALL, "") in its DLL_PROCESS_ATTACH , presumably so that its calls to

https://devblogs.microsoft.com/oldnewthing/20110803-00/?p=9983
http://blogs.msdn.com/oldnewthing/archive/2006/04/17/577483.aspx
http://msdn.microsoft.com/bb688127.aspx#ene
http://blogs.msdn.com/oldnewthing/archive/2009/12/02/9931183.aspx

2/2

snprintf would follow the environment locale. What made catching the miscreant more

difficult was that the rogue shell extension didn’t restore the locale when it was unloaded (not

that that would have been the correct thing to do either), so by the time the bad locale was

detected, the culprit was long gone!
That other DLL used a global setting to solve a local

problem. Given the problem “How do I get my calls to snprintf to use the German locale

settings?” they decided to change all calls to snprintf to use the German locale settings,

even the calls that didn’t originate from the DLL itself. What if the program hosting the shell

extension had done a setlocale(LC_ALL, "French") ? Tough noogies; the rogue DLL just

screwed up the host program, which wants to use French locale settings but is now being

forced to use German ones. The program probably won’t notice that somebody secretly

replaced its coffee with Folgers Crystals. It’ll be a client who notices that the results are not

formatted correctly. The developers of the host program, of course, won’t be able to

reproduce the problem in their labs, since they don’t have the rogue shell extension, and the

problem will be classified as “unsolved.”

What both the rogue shell extension and the original customer’s shell extension should be

using is the _l variety of string formatting functions (in this case _snprintf_l , although

_snprintf_s_l is probably better). The _l variety lets you pass an explicit locale which

will be used to format that particular string. (You create one of these _locale_t objects by

calling _create_locale with the same parameters you would have passed to set‐

locale .) Using the _l technique solves two problems:

1. It lets you apply a local solution to a local problem. The locale you specify applies only

to the specific call; the process’s default locale remains unchanged.

2. It allows you to ensure that you get the locale you want even if the host process has set a

different locale.

If either the customer’s DLL or the rogue DLL had followed this principle of not using a

global setting to solve a local problem, the conflict would not have arisen.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2008/12/11/9193695.aspx
https://www.youtube.com/watch?v=6HGKJHpQkfI
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

