
1/2

July 8, 2011

We've traced the pipe, and it's coming from inside the
process!

devblogs.microsoft.com/oldnewthing/20110708-00

Raymond Chen

We saw last time
one of the deadlocks you can run into when playing with pipes.
Today we’ll

look at another one:

Our program runs a helper process with stdin/stdout/stderr redirected.
The helper process takes
input via stdin and prints the result
to stdout.
Sometimes we find that the WriteFile from
the controlling
process into the stdin pipe hangs.
Closer examination reveals that the helper
process no longer exists.
Under these conditions, should the WriteFile fail,
since the reader
is no longer available?

If you attempt to write to a pipe when
there is nobody around to
call ReadFile to read the

data out the other end,
the call to WriteFile should fail with the error

ERROR_BROKEN_PIPE
(known in Unix-land as EPIPE).
What does it mean when the write

pends?
It means that there is still somebody around who can read the data
out of the pipe,

but the internal pipe buffer is full,
so the write call waits for the reader to drain the data.

But the helper process no longer exists.
Maybe it crashed or exited prematurely.
That means

that there is nobody around to read the data out of the pipe.
Why, then, does the call not

return immediately with an error?

Because there is still somebody around to read the data out of the pipe.

Did you remember to close the controlling process’s copy of the read
end of the pipe?

If the controlling process hasn’t closed its copy of the read end
of the pipe, then the pipe is

correct in believing that there is
still somebody around to read the data out of the pipe,

namely you.
You have a handle to the read end of the pipe,
so the pipe manager cannot

declare the pipe dead;
for all it knows,
you intended for the controlling process to call
 Read‐

File to read the data out of the pipe.
As far as the pipe is concerned,
you simply haven’t

gotten around to it yet,
so the pipe waits patiently.

https://devblogs.microsoft.com/oldnewthing/20110708-00/?p=10203
http://blogs.msdn.com/b/oldnewthing/archive/2011/07/07/10183884.aspx

2/2

Yes, our code calls CloseHandle on the controlling
process’s copy of the pipe handles.
I’ve
highlighted it below.
(Error checking has been elided for simplicity.)

// create the pipe for stdout/stderr

CreatePipe(&hReadPipeTmp, &hWritePipeTmp, NULL, 0);

// duplicate the handles with bInheritHandle=FALSE to prevent

// them from being inherited

DuplicateHandle(GetCurrentProcess(), hWritePipeTmp,

 GetCurrentProcess(), &hWritePipe,

 0, FALSE, DUPLICATE_SAME_ACCESS);

DuplicateHandle(GetCurrentProcess(), hReadPipeTmp,

 GetCurrentProcess(), &hReadPipe,

 0, FALSE, DUPLICATE_SAME_ACCESS);

// create the pipe for stdin

CreatePipe(&hHelperReadPipe, &hHelperWritePipe,

 NULL, 0);

// disable inheritance on on the write end of the stdin pipe

SetHandleInformation(hHelperWritePipe, HANDLE_FLAG_INHERIT, 0);

// prepare to create the process

... blah blah blah other stuff unrelated to handles ...

startupInfo.hStdInput = hHelperReadPipe;

startupInfo.hStdOutput = hWritePipeTmp;

startupInfo.hStdError = hWritePipeTmp;

CreateProcess(...);

// Here is where we close the handles

CloseHandle(hReadPipeTmp);

CloseHandle(hWritePipeTmp);

// Write the input to the helper process (hangs here sometimes)

WriteFile(hHelperWritePipe, ...);

This is another case of
getting so excited about doing something
that you forget to do it.

(Notice how the comments to that article very quickly descend
into a discussion of command

line quotation marks.)

Observe that the handles being closed are hReadPipeTmp
and hWritePipeTmp , which is a

good thing to do,
but neither has any effect on the
 WriteFile .
The WriteFile is writing

to
 hHelperWritePipe
and therefore the handle you need to close is
 hHelperReadPipe .

Since that handle is still open in the controlling process,
the pipe manager will not break the

pipe,
because it’s waiting for you to read from it.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2009/10/14/9906906.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

