
1/3

July 1, 2011

The list of heaps returned by GetProcessHeaps is valid
when it returns, but who knows what happens later

devblogs.microsoft.com/oldnewthing/20110701-00

Raymond Chen

A customer had a problem involving heap corruption.

In our code, we call
 GetProcessHeaps
and then for each heap, we call HeapSet‐
Information
to enable the low fragmentation heap.
However, the application crashes due to
an invalid heap handle.

HANDLE heaps[1025];

DWORD nHeaps = GetProcessHeaps(heaps, 1024);

for (DWORD i = 0; i < nHeaps; i++) {

ULONG HeapFragValue = HEAP_LFH;

HeapSetInformation(heaps[i], HeapCompatibilityInformation,

 &HeapFragValue, sizeof(HeapFragValue));

}

My question is, why do we need to allocate an array of size 1025
even though we pass 1024 to
GetProcessHeaps ?

Ha, faked you out with that question, eh?
(It sure faked me out.)

It’s not clear why the code under-reports the buffer size
to GetProcessHeaps .
So let’s

ignore the customer’s stated question and move on to
the more obvious question:
Why does

this code crash due to an invalid heap handle?

Well, for one thing,
the code mishandles the case where there are more than 1024
heaps in

the process.
But as it happens,
the value returned by GetProcessHeaps
was well below

1024,
so that wasn’t the reason for the crash.

Unlike kernel objects, heaps are just chunks of user-mode-managed
memory.
A heap handle

is not reference-counted.
(Think about it: If it were, how would you release the reference

count?
There is no HeapCloseHandle function.)
When you destroy a heap, all existing

handles to that heap
become invalid.

https://devblogs.microsoft.com/oldnewthing/20110701-00/?p=10273

2/3

The consequence of this is that there is a race condition inherent
in the use of the Get‐

ProcessHeaps function:
Even though the list of heaps is correct when it is returned to you,

another thread might sneak in and destroy one of those heaps out
from under you.

This didn’t explain the reported crash, however.
“We execute this code during application

startup,
before we create any worker threads,
so there should be no race condition.”

While it may be true that the code is executed before the program
calls CreateThread ,
a

study of the crash dump reveals that some sneaky DLLs had paid
a visit to the process and

had even unloaded themselves!

0:001> lm

start end module name

75b10000 75be8000 kernel32 (deferred)

77040000 7715e000 ntdll (deferred)

...

Unloaded modules:

775e0000 775e6000 NSI.dll

76080000 760ad000 WS2_32.dll

71380000 713a2000 COEC23~1.DLL

“Well, that explains how a heap could have been destroyed from
behind our back.
That

COEC23~1.DLL probably created a private heap
and destroyed it when it was unloaded.
But

how did that DLL get injected into our process in the first place?”

Given the presence of some networking DLLs,
the customer guessed that COEC23~1.DLL

was injected by network firewall security software,
but given that these were Windows Error

Reporting crash dumps,
there was no way to get information from the user’s machine
about

how that COEC23~1.DLL ended up loaded in
the process, and then spontaneously unloaded.

Even though we weren’t able to find the root cause, we were still
able to make some

suggestions to avoid the crash.

Instead of trying to convert every heap to a low fragmentation heap,
just convert the process

heap.
The process heap remains valid for the lifetime of the process,
so you won’t see it

destroyed out from under you.
(Or if you do, then you have bigger problems than a crash in

HeapSetInformation .)

In fact, you can remove the code entirely when running on Windows Vista
or higher,
because

all heaps default to the low fragmentation heap
starting in Windows Vista.

Running around and changing settings on heaps you didn’t create
is not a good idea.

Somebody else owns that heap; who knows what they’re going to do with it?

Okay, so if GetProcessHeaps is so fragile, why does
it even exist?

http://blogs.msdn.com/b/oldnewthing/archive/2010/04/30/10004931.aspx

3/3

Well, it’s not really intended for general use.
It exists primarily for diagnostics.
You might be

chasing down a memory corruption bug, so you sprinkle
into your code some calls to a helper

function that calls
 GetProcessHeaps
to get all the heaps and then calls
 HeapValidate on

each one
to check for corruption.
Or maybe you’re chasing down a memory leak in a

particular scenario,
so you have a function which calls
 GetProcessHeaps and
 HeapWalk

once before
entering the scenario, and then again after the scenario completes,
and then

compares the results looking for leaks.
In both cases, you’re using the facility for debugging

and diagnostic
purposes.
If there’s a race condition that destroys a heap while you’re studying

it, you’ll just throw away the results of that run and try again.

Bonus chatter:
While writing up this story,
I went back and did some more Web searching

for that mysterious
 COEC23~1.DLL .
(Tracking it down is hard because all you really know

about the file
name is that it begins with “CO”; the rest is a hashed short file name.)
And I

found it:
It’s not an antivirus program.
It’s one of those “desktop enhancement” programs

that injects itself
into every process with the assistance of
 AppInit_DLLs , or as I prefer to

call it
Deadlock_Or_Crash_Randomly_DLLs.
(You may have noticed that I anonymized the

program as “CO”,
short for Contoso, a fictional company used throughout
Microsoft

literature.)

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2007/12/13/6648400.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

