
1/4

June 3, 2011

Swamping the thread pool with work faster than it can
drain

devblogs.microsoft.com/oldnewthing/20110603-00

Raymond Chen

This scenarios is real,
but details have been changed to protect the guilty.

Consider a window showing the top of a multi-page document.
The developers found that

when the user clicks the down-arrow
button on the scroll bar,
the program locks up for 45

seconds,
over a dozen threads are created,
and then suddenly everything clears up and the

window
displays the final paragraph of the document
(i.e., it scrolled all the way to the

bottom).

The problem was traced to queueing tasks to
the thread pool faster than they can drain.

The document is an object which, unlike a window, has no thread
affinity.
(Naturally, there

are critical sections around the various document
methods so you don’t have corruption if

two threads try to modify
the document at the same time.)
The way to display a different

portion of
the document is to call a method which
changes the viewport location.

When the user clicks the down-arrow button on the scroll bar,
the main thread creates a

periodic timer
at
four fifths of the double-click speed,
and each time the timer elapses,
it does

the equivalent of
 document.ScrollDown() .
The code cancels the timer once the user

releases the mouse button.

The catch is that the document was so complicated that
it takes a long time to change the

view top and redraw the new view.
(I don’t remember exactly how long, but let’s say it was

700ms.
The important thing is that it takes longer than 400ms.)

Given that set-up, you can see what happens when the user clicks
the scroll down-arrow.
The

initial scroll is initiated,
and before it can complete,
another scroll is queued to the thread

pool.
The document view keeps trying to update its position, but the
periodic timer generates

scroll requests faster than the document
view can keep up.

If that description was too terse, here’s a longer version.

The code for scrolling went something like this:

https://devblogs.microsoft.com/oldnewthing/20110603-00/?p=10503
http://blogs.msdn.com/oldnewthing/archive/2008/04/23/8417521.aspx

2/4

OnBeginScrollDown()

{

// Start a timer to do the scrolling

CreateTimerQueueTimer(&htimer, NULL, ScrollAgain, NULL,

 0, GetDoubleClickTime() * 4 / 5, WT_EXECUTEDEFAULT);

}

OnEndScrollDown()

{

if (htimer != NULL) {

 DeleteTimerQueueTimer(NULL, htimer, INVALID_HANDLE_VALUE);

 htimer = NULL;

}
}

ScrollAgain(...)

{

document.ScrollDown();

}

(In reality, the program didn’t use the
 CreateTimerQueueTimer function—it
had a custom

timer queue and a custom thread pool—but
the effect is the same.)

At time T = 0,
the user clicks on the scroll bar down-arrow.
The UI thread starts the timer

with an initial delay of zero and a period of 400ms.
The timer fires immediately, and a thread

pool thread is
asked to run ScrollAgain .
The ScrollAgain function calls
 ScrollDown ,

which begins the process of scrolling the document.

At time T = 400ms,
the periodic timer fires, and a new thread pool thread is created
to

service it.
Pool thread 2 calls ScrollDown() and blocks.

At time T = 700ms,
the ScrollDown call
on pool thread 1 completes,
and now pool thread 2

can begin its call to
 ScrollDown() .

At time T = 800ms,
the periodic timer fires again,
and pool thread 1 (now idle) is asked to

handle it.
Pool thread 1 calls ScrollDown() and blocks.

At time T = 1200ms,
the periodic timer fires yet again.
This time,
there are no idle threads in

the thread pool, so the thread
pool manager creates yet another thread to service the timer.

Pool thread 3 calls ScrollDown() and blocks.

At time T = 1400ms,
the ScrollDown()
call issued by pool thread 2 completes.
Pool

thread 2 now returns to idle.
Now the call to
 ScrollDown() from pool thread 1
(issued at

time T = 800ms) can start.

At time T = 1600ms,
the periodic timer fires again,
and pool thread 2 is chosen to service it.

Pool thread 2 calls ScrollDown() and blocks.

At time T = 2000ms,
the periodic timer fires again, and a new pool thread is created
to

service it.
Pool thread 4 calls ScrollDown() and blocks.

http://msdn.microsoft.com/en-us/library/ms682485(VS.85).aspx

3/4

You can see where this is going, I hope.
Work is being generated by the periodic timer at a

rate of one
work item per 400ms,
but it takes 700ms to carry out each work item,
and the

tasks are serialized on the document.
It’s like
Lucy in the chocolate factory.
The document is

frantically trying to carry out all the
work, and it never manages to catch up.
Eventually, the

document scrolls all the way to the bottom,
and the mass of
pent-up calls to ScrollDown()

all return immediately since
there is no more scrolling possible.

Now that the document is idle,
it can paint,
and that’s where the user finally sees the

document,
scrolled all the way to the bottom.

There are a number of possible solutions here.

One way is
not to queue up another scroll while an old one is still running.
Instead, just wait

for it to finish, and then issue a new scroll that
accumulates all the scrolling that had taken

place while you were waiting
for the first to complete.
This results in jerky scrolling, however,

and it creates a lag of up to 700ms between the user releasing the mouse
button and scrolling

actually stopping.

Another approach is to
disable repainting the entire document when you detect that you are

in the document is too complex to scroll quickly case
and just scroll the scrollbar thumb.

When the user stops scrolling, re-enable painting and boom
the document appears at the

user’s chosen location.
This preserves responsiveness, but you lose the ability to see the

document as you scroll it.

I don’t know what solution the customer finally went with.
I was just there to help with the

debugging.

Bonus example:
Larry Osterman describes
another situation
with
the same underlying

cause.

Hidden take-away:
Observe that both of these examples illustrate
one of the subtle

consequences of a design which
moves all processing off the UI thread.

Update:
Note that SetTimer wouldn’t have helped here.

case WM_TIMER:

 if (wParam == SCROLLTIMER) {

 QueueUserWorkItem(ScrollAgain, NULL, WT_EXECUTEDEFAULT);

 }

 ...

Since the processing has been moved off the UI thread, the
 WM_TIMER messages are free to

keep flowing in
and queue up work faster than the background thread can keep up.

Raymond Chen

Follow

https://www.youtube.com/watch?v=uztA6JCKB4s
http://blogs.msdn.com/larryosterman/archive/2009/06/25/what-s-wrong-with-this-code-part-26-a-real-world-example.aspx
http://blogs.msdn.com/larryosterman/archive/2009/06/29/what-s-wrong-with-this-code-part-26-the-answer.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

