
1/2

May 25, 2011

WinMain is just the conventional name for the Win32
process entry point

devblogs.microsoft.com/oldnewthing/20110525-00

Raymond Chen

WinMain is
the conventional name for the user-provided entry point
in a Win32 program.

Just like in 16-bit Windows, where the
complicated entry point requirements were converted

by language-provided
startup code into a call to the the user’s WinMain function,
the language

startup code for 32-bit programs also does the work of
converting the raw entry point into

something that calls
 WinMain
(or wWinMain or main or _wmain).

The raw entry point for 32-bit Windows applications has a much simpler
interface than the

crazy 16-bit entry point:

DWORD CALLBACK RawEntryPoint(void);

The operating system calls the function with no parameters,
and the return value (if the

function ever returns) is passed
to the ExitThread function.
In other words, the operating

system calls your entry point like this:

...

 ExitThread(RawEntryPoint());

 /*NOTREACHED*/

Where do the parameters to WinMain come from,
if they aren't passed to the raw entry

point?

The language startup code gets them by asking the operating system.
The instance handle for

the executable comes from
 GetModuleHandle(NULL) ,
the command line comes from

GetCommandLine ,
and the nCmdShow comes from
 GetStartupInfo .
(As we saw before,

the hPrevInstance is always NULL.)

If you want to be hard-core, you can program to the raw entry point.
Mind you, other parts of

your program may rely upon the work that the
language startup code did before calling your

WinMain .
For example, the C++ language startup code will run global constructors
before

calling into WinMain ,
and both C and C++ will initialze the so-called security cookie
used as

part of
stack buffer overrun detection.
Bypass the language startup code at your peril.

https://devblogs.microsoft.com/oldnewthing/20110525-00/?p=10573
http://msdn.microsoft.com/en-us/library/ms633559.aspx
http://blogs.msdn.com/oldnewthing/archive/2007/12/03/6644060.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/06/15/156022.aspx
http://blogs.msdn.com/michael_howard/archive/2007/04/03/hardening-stack-based-buffer-overrun-detection-in-vc-2005-sp1.aspx

2/2

Bonus chatter:
Notice that if you choose to return from your entry point function,
the

operating system passes the return value to ExitThread
and not ExitProcess .
For this

reason, you typically don't want to return from your raw
entry point but instead want to call

ExitProcess directly.
Otherwise, if there are background threads hanging around, they

will
prevent your process from exiting.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

