
1/4

May 6, 2011

A function pointer cast is a bug waiting to happen
devblogs.microsoft.com/oldnewthing/20110506-00

Raymond Chen

A customer reported an application compatibility bug in Windows.

https://devblogs.microsoft.com/oldnewthing/20110506-00/?p=10723

2/4

We have some code that manages a Win32 button control.
During button creation, we subclass
the window by calling
 SetWindowSubclass .
On the previous version of Windows, the
subclass procedure
receives the following messages, in order:

WM_WINDOWPOSCHANGING

WM_NCCALCSIZE

WM_WINDOWPOSCHANGED

We do not handle any of these messages and pass them through
to DefSubclassProc .
On
the latest version of Windows,
we get only the first two messages,
and comctl32 crashes
while it’s handling
the third message before it gets a chance to call us.
It looks like it’s reading
from invalid memory.

The callback function goes like this:

LRESULT ButtonSubclassProc(

 HWND hwnd,

 UINT uMsg,

 WPARAM wParam,

 LPARAM lParam,

 UINT_PTR idSubclass,

 DWORD_PTR dwRefData);

We install the subclass function like this:

SetWindowSubclass(

 hwndButton,

 reinterpret_cast<SUBCLASSPROC>(ButtonSubclassProc),

 id,

 reinterpret_cast<DWORD_PTR>(pInfo));

We found that if we changed the callback function declaration to

LRESULT CALLBACK ButtonSubclassProc(

 HWND hwnd,

 UINT uMsg,

 WPARAM wParam,

 LPARAM lParam,

 UINT_PTR idSubclass,

 DWORD_PTR dwRefData);

and install the subclass function like this:

SetWindowSubclass(

 hwndButton,

 ButtonSubclassProc,

 id,

 reinterpret_cast<DWORD_PTR>(pInfo));

3/4

then the problem goes away.
It looks like the new version of Windows introduced
a
compatibility bug; the old code works fine on all previous
versions of Windows.

Actually, you had the problem on earlier versions of Windows, too.
You were just lucky that

the bug wasn’t a crashing bug.
But now it is.

This is a classic case of
mismatching the calling convention.
The SUBCLASSPROC function is

declared as requiring
the CALLBACK calling convention (which on x86
maps to

__stdcall),
but the code declared it without any calling convention at all,
and the ambient

calling convention was __cdecl .
When they went to compile the code, they got a compiler

error
that said something like this:

error C2664: 'SetWindowSubclass' : cannot convert parameter 2 from
'LRESULT
(__cdecl *)(HWND,UINT,WPARAM,LPARAM,UINT_PTR,DWORD_PTR)'
to 'SUBCLASSPROC'

“Since the compiler was unable to convert the parameter,
let’s give it some help and stick a

cast in front.
There, that shut up the compiler.
Those compiler guys are so stupid.
They can’t

even figure out how to convert one function pointer
to another.
I bet they need help wiping

their butts when they go to the bathroom.”

And there you go, you inserted a cast to shut up the compiler
and masked a bug instead of

fixing it.

The only thing you can do with a function pointer after casting it
is to cast it back to its

original type.¹
If you try to use it as the cast type, you will crash.
Maybe not today,
maybe not

tomorrow, but
someday.

In this case, the calling convention mismatch resulted in
the stack being mismatched when

the function returns.
It looks like earlier versions of Windows managed to hobble
along long

enough before things got resynchronized
(by an EBP frame restoration, most likely)
so the

damage didn’t spread very far.
But the new version of Windows, possibly one compiled with

more aggressive optimizations,
ran into trouble before things resynchronized, and thus

occurred
the crash.

The compiler was yelling at you for a reason.

It so happened that the Windows application compatibility team
had already encountered

this problem in their test labs,
and a shim had already been developed to auto-correct this

mistake.
(Actually, the shim also corrects another mistake they hadn’t noticed
yet:
They

forgot to call RemoveWindowSubclass
when they were done.)

¹I refer here to pointers to static functions.
Pointers to member functions are entirely

different animals.

Raymond Chen

http://blogs.msdn.com/oldnewthing/archive/2004/01/15/58973.aspx
http://blogs.msdn.com/oldnewthing/archive/2009/10/23/9911891.aspx#9912158
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/19/60162.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/16/59415.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/02/09/70002.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

