
1/4

April 29, 2011

Why is there a RestoreLastError function that does the
same thing as SetLastError?

devblogs.microsoft.com/oldnewthing/20110429-00

Raymond Chen

Matt Pietrek noticed that
SetLastError and
RestoreLastError do exactly the same thing

and wondered why there’s a separate function for it.

It’s to assist in debugging and diagnostics.

Say you’re debugging a problem and
when you call GetLastError you get

ERROR_ACCESS_DENIED .
It would really help a lot if you could figure out
who set the error

code to ERROR_ACCESS_DENIED .
If you set a breakpoint on SetLastError ,
you find that

people call
 SetLastError for two different
reasons:

1. To report an error.

2. To restore the error code to what it was before they did something
that might change

the last error code.

That second one needs a little explanation.
You might have a logging function that goes like

this:

https://devblogs.microsoft.com/oldnewthing/20110429-00/?p=10803
http://msdn.microsoft.com/en-us/magazine/cc300448.aspx

2/4

// Remember, code in italics is wrong

void LogSomething(blah blah)

{

DWORD dwError = GetLastError();

... do logging stuff ...

SetLastError(dwError);

}

// or if you prefer RAII

class PreserveLastError

{

public:

 PreserveLastError() : m_dwLastError(GetLastError()) {}

 ~PreserveLastError() { SetLastError(m_dwLastError); }

private:

 DWORD m_dwLastError;

};
void LogSomething(blah blah)

{

PreserveLastError preserve;

... do logging stuff ...

}

It’s important that functions which perform logging,
assertion checking, and other diagnostic

operations
are nonintrusive.
You don’t want a bug to go away when you turn on logging

because the logging code somehow perturbed the system.
Therefore, your logging function

saves the value of
 GetLastError() and sets that back as the error
code when it’s done, so

that any errors that took place
during logging do not escape and inadvertently
affect the rest

of the program.

Now let’s go back to the code that’s trying to figure out
who set the error code to

ERROR_ACCESS_DENIED .
You set up your debugging diagnostic tool and tell it to
record

everybody who calls
 SetLastError()
and pay particular attention to everybody who sets

the error to ERROR_ACCESS_DENIED .
You then run your scenario,
your program encounters

the failure you’re trying to debug,
and you ask the diagnostic tool,
“Tell me who set the error

code to
 ERROR_ACCESS_DENIED .”
The diagnostic tool says,
“Ah, I have that in my history.

The function that set the error code to
 ERROR_ACCESS_DENIED is…
 LogSomething !”

Of course, LogSomething wasn’t really the originator of the
 ERROR_ACCESS_DENIED ;
it

was just restoring things to how it found them.
The real ERROR_ACCESS_DENIED came from

somebody else,
and the log function was just being careful not to disturb it.

3/4

...

 if (!FunctionX()) {

 LogSomething("Function X failed");

 } else {

 LogSomething("Function X succeeded");

 FunctionY(); // also does some logging

 }

 FunctionZ(); // also does some logging

 Assert(EverythingOkay()); // assertion fires

 // GetLastError() returns ERROR_ACCESS_DENIED

...

All those calls to logging functions in between
called GetLastError() and got

ERROR_ACCESS_DENIED
back,
then when the logging was complete, they called
 SetLast‐

Error(ERROR_ACCESS_DENIED)
to put things back.
Your diagnostic error-tracing tool

gleefully points the finger
at your logging function:
“Look! Look! This guy set the error code

to
 ERROR_ACCESS_DENIED !”

Enter RestoreLastError .
This function does the same thing as SetLastError ,
but its

use is a message to diagnostic tools that
“Sure, you may see me set an error code,
but it

wasn’t my idea.
I’m just trying to put things back the way I found them.
Keep looking

backwards in your history.”

(The message also works forward in time:
If you want to catch ERROR_ACCESS_DENIED in

the act,
you might set a breakpoint on SetLastError ,
and then get frustrated that the

breakpoint keeps getting hit by
your logging function.
Switching the logging function to

RestoreLastError
keeps the breakpoint on
 SetLastError from firing spuriously.)

The corrected version of the LogSomething
function is therefore something like this:

void LogSomething(blah blah)

{

DWORD dwError = GetLastError();

... do logging stuff ...

RestoreLastError(dwError);

}

// or if you prefer RAII

class PreserveLastError

{

public:

 PreserveLastError() : m_dwLastError(GetLastError()) {}

 ~PreserveLastError() { RestoreLastError(m_dwLastError); }

private:

 DWORD m_dwLastError;

};

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

