
1/4

April 22, 2011

Even if you have a lock, you can borrow some lock-free
techniques

devblogs.microsoft.com/oldnewthing/20110422-00

Raymond Chen

Even if you prefer to use a lock
(after all, they are much easier to program),
you can borrow

some lock-free techniques.
For example, consider this:

CRITICAL_SECTION g_cs;

GORILLADATA g_data;

void PokeGorilla(double intensity)

{

 EnterCriticalSection(&g_cs);

 DeformGorilla(intensity, &g_data);

 Reticulate(&g_data.spline);

 int stress = CalculateTension(&g_data.spline);

 if (stress < 25)      g_data.mood = RELAXED;

 else if (stress < 50) g_data.mood = ANNOYED;

 else                  g_data.mood = ANGRY;

 DeleteObject(g_data.hbmGorilla);

 g_data.hbmGorilla = RenderGorilla(&g_data);

 LeaveCriticalSection(&g_cs);

}


There are some concerns here.
First of all, there’s the lock hierarchy issue:
If reticulating a

spline takes the geometry lock,
that may violate our lock hierarchy.

If the lock g_cs  is a hot lock,
you may be concerned that all this gorilla stuff will
hold the

lock for too long.
Maybe rendering a gorilla is a slow and complicated
operation because it’s

hard to get the fur just right.

These issues become less onerous if you switch to a lock-free
algorithm, but that’s an awful

lot of work, and it’s hard to
get right.
But maybe you can do just 20% of the work to get 80%

of the benefit.

https://devblogs.microsoft.com/oldnewthing/20110422-00/?p=10853


2/4

void PokeGorilla(double intensity)

{

 // Capture

 EnterCriticalSection(&g_cs);

 GORILLADATA data = g_data; // typo fixed

 LeaveCriticalSection(&g_cs);

 // Recalculate based on captured data

 DeformGorilla(intensity, &data);

 Reticulate(&data.spline);

 int stress = CalculateTension(&data.spline);

 if (stress < 25)      data.mood = RELAXED;

 else if (stress < 50) data.mood = ANNOYED;

 else                  data.mood = ANGRY;

 data.hbmGorilla = RenderGorilla(&data);

 // Commit

 EnterCriticalSection(&g_cs);

 HBITMAP hbmToDelete = g_data.hbmGorilla;

 g_data = data;

 LeaveCriticalSection(&g_cs);

 DeleteObject(hbmToDelete);

}


Here, we use the capture/try/commit model.
We capture the state of the gorilla into a local

variable,
then perform our update based on that captured state.
The spline reticulation takes

place without any locks held,
which avoids introducing a lock hierarchy violation.
And

rendering the gorilla is done without any locks held,
which avoids introducing a choke point

on the lock.
After the calculations are done, we then re-enter the lock
and commit the

changes.

This pattern uses a last-writer-wins model.
If another thread pokes the gorilla while we are

still
calculating the previous gorilla state, we will overwrite
that gorilla state when we

complete.
For some scenarios, that’s acceptable.
But maybe the gorilla’s emotional state

needs to be an accumulation
of all the times he’s ben poked.
We want to detect that

somebody has poked the gorilla while we
were busy calculating so that we can incorporate

that new information
into the final result.

To do that, we introduce
a change counter.

http://blogs.msdn.com/b/oldnewthing/archive/2011/04/12/10152296.aspx


3/4

LONG g_lCounter;

void PokeGorilla(double intensity)

{

 BOOL fSuccess;

 do {

   // Capture

   EnterCriticalSection(&g_cs);

   GORILLADATA data = g_data; // typo fixed

   LONG lCounter = g_lCounter;

   LeaveCriticalSection(&g_cs);

   // Recalculate based on captured data

   DeformGorilla(intensity, &data);

   Reticulate(&data.spline);

   int stress = CalculateTension(&data.spline);

   if (stress < 25)      data.mood = RELAXED;

   else if (stress < 50) data.mood = ANNOYED;

   else                  data.mood = ANGRY;

   data.hbmGorilla = RenderGorilla(&data);

   // Commit

   EnterCriticalSection(&g_cs);

   HBITMAP hbmToDelete;

   if (lCounter == g_lCounter)

   {

     hbmToDelete = g_data.hbmGorilla;

     g_data = data;

     g_lCounter++;

     fSuccess = TRUE;

   } else {

     hbmToDelete = data.hbmGorilla;

     fSuccess = FALSE;

   }

   LeaveCriticalSection(&g_cs);

   DeleteObject(hbmToDelete);

 } while (!fSuccess);

}


In addition to the regular gorilla data,
we also associate a change counter that is incremented

each time somebody pokes the gorilla.
In real life, you might want to make the change

counter
part of the GORILLADATA  structure.
(Actually, in real life, you probably shouldn’t

poke a gorilla.)
In a lock-free algorithm, we would
 InterlockedCompareExchangeRelease

the lock counter to see if the lock counter changed
(and if not, to update it with the new lock

counter).
But since a GORILLADATA  structure
cannot be updated atomically,
we have to use

our critical section to perform the
comparison-and-update.

Even though we used a lock, we still follow the lock-free pattern.
If the gorilla has been poked

while we were busy processing our own poke,
then we throw away the results of our

computations and start over,
so that our poke can be accumulated with the previous pokes.

Exercise:
What constraints must be applied to the
 GORILLADATA  structure for this

technique to work?



4/4

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

