
1/2

April 20, 2011

Corrections to Patterns for using the InitOnce functions
devblogs.microsoft.com/oldnewthing/20110420-00

Raymond Chen

Adam Rosenfield pointed out
that it is not possible to fail an
asynchronous initialization;
if

you pass
 INIT_ONCE_INIT_FAILED
when completing an asynchronous initialization,
the

function fails with
 ERROR_INVALID_PARAMETER .
(Serves me right for writing an article the

night before it goes up.)
A more correct version is therefore

ITEMCONTROLLER *SingletonManager::Lookup(DWORD dwId)

{

... same as before until we reach the "singleton constructor pattern"

void *pv = NULL;

BOOL fPending;

if (!InitOnceBeginInitialize(&m_rgio[i], INIT_ONCE_ASYNC,

 &fPending, &pv)) return NULL;

if (fPending) {

 ITEMCONTROLLER *pic = m_rgsi[i].pfnCreateController();

 if (!pic) return NULL;

 if (InitOnceComplete(&m_rgio[i], INIT_ONCE_ASYNC, pic)) {

 pv = pic;

 } else {

 // lost the race - discard ours and retrieve the winner

 delete pic;

 InitOnceBeginInitialize(&m_rgio[i], INIT_ONCE_CHECK_ONLY,

 X&fPending, &pv);

 }

}
return static_cast<ITEMCONTROLLER *>(pv);

}

In other words, the pattern is as follows:

Call InitOnceBeginInitialize
in async mode.

If it returns fPending == FALSE ,
then initialization has already been performed and

you can
go ahead and use the result passed back in the final parameter.

https://devblogs.microsoft.com/oldnewthing/20110420-00/?p=10873
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/08/10151258.aspx#10151421

2/2

Otherwise, initialization is pending.
Do your initialization, but remember that since this

is a lock-free
algorithm, there can be many threads trying to initialize
simultaneously,

so you have to be careful
how you manipulate global state.
This pattern works best if

initialization takes the form of
creating a new object (because that means multiple

threads
performining initialization are each creating independent objects).

If initialization fails, then abandon the operation.

Call InitOnceComplete with the result
of your initialization.

If InitOnceComplete succeeds,
then you won the initialization race, and you’re done.

If InitOnceComplete fails,
then you lost the initialization race and should clean up

your
failed initialization.
In that case, you should call
 InitOnceBeginInitialize
one

last time to get the answer from the winner.

While I’m here, I may as well answer the exercises.

Exercise: Instead of calling
 InitOnceComplete with
 INIT_ONCE_INIT_FAILED ,
what

happens if the function simply returns
without ever completing the init-once?

Answer: The INIT_ONCE structure is left
in an asynchronous initialization pending state.

This is fine, because the next attempt to initialize will simply
join the race.
(And it will win

since we already quit the race!)

Exercise:
What happens if two threads try to perform
asynchronous initialization and the

first one
to complete fails?

Answer:
If two threads both begin initialization and the first one to
come to a result

concludes that the initialization fails, then
it will abandon the initialization.
The second

thread will then come to its own conclusion.
If that conclusion is also failure, then it too will

abandon the initialization as well.
If that conclusion is that initialization was successful,
then

its completion will succeed and the INIT_ONCE
will enter the initialized state.

Exercise:
Combine the results of the first two exercises
and draw a conclusion.

Answer:
It is fine to abandon a failed initialization (and indeed,
given what we learned

above, it is indeed mandatory).

There is a documentation update coming soon to clarify that
you cannot combine

INIT_ONCE_ASYNC and
 INIT_ONCE_INIT_FAILED .

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/04/07/10150728.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

