
1/1

April 19, 2011

Visual Studio 2005 gives you acquire and release
semantics for free on volatile memory access

devblogs.microsoft.com/oldnewthing/20110419-00

Raymond Chen

If you are using
Visual Studio 2005 or later, then you don’t need the weird
Interlocked‐

ReadAcquire
function
because
Visual Studio 2005 and later automatically impose acquire

semantics
on reads from volatile locations.
It also imposes release semantics on writes to

volatile locations.
In other words, you can replace the old
 InterlockedReadAcquire

function with the following:

#if _MSC_VER >= 1400

LONG InterlockedReadAcquire(__in volatile LONG *pl)

{

 return *pl; // Acquire imposed by volatility

}

#endif

This is a good thing because it expresses your intentions more
clearly to the compiler.
The

old method that overloaded
 InterlockedCompareExchangeAcquire
forced the compiler to

perform the actual compare-and-exchange
even though we really didn’t care about the

operation; we just
wanted the side effect of the Acquire semantics.
On some architectures,

this forces the cache line dirty
even if the comparison fails.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20110419-00/?p=10893
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/12/10152296.aspx
http://msdn.microsoft.com/en-us/library/12a04hfd(v=VS.80).aspx
http://msdn.microsoft.com/en-us/library/b0084kay(v=VS.80).aspx
http://www.bing.com/search?q=%22To+simplify+the+interface+to+the+processor%27s+bus,+the+destination+operand+receives+a+write+cycle+without+regard+to+the+result+of+the+comparison%22
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

