
1/2

April 18, 2011

Don't forget to include the message queue in your lock
hierarchy

devblogs.microsoft.com/oldnewthing/20110418-00

Raymond Chen

In addition to the loader lock,
the message queue is another resource that people often
forget

to incorporate into their lock hierarchy.
If your code runs on a UI thread, then it implicitly

owns
the message queue whenever it is running,
because messages cannot be dispatched to a

thread until
it calls a message-retrieval function
such as GetMessage or
 PeekMessage .
In

other words, whenever a thread is not checking for a message,
it cannot receive a message.

For example, consider the following code:

EnterCriticalSection(&g_cs);

for (int i = 0; i < 10; i++) {

 SendMessage(hwndLB, LB_ADDSTRING, 0, (LPARAM)strings[i]);

}

LeaveCriticalSection(&g_cs);

If hwndLB belongs to another thread,
then you have a potential deadlock,
because that

thread might be waiting for your critical section.

case WM_DOESNTMATTERWHAT:

 EnterCriticalSection(&g_cs);

 ... doesn't matter what goes here ...

 LeaveCriticalSection(&g_cs);

 break;

If you happen to try to send the message while that other
thread is waiting for the critical

section,
you will deadlock because you are waiting for that thread
to finish whatever it’s doing

so it can process the message
you sent to it,
but that thread is waiting for
the critical section

which you own.

Even if you promise that
 hwndLB belongs to your thread,
the possibility of subclassing or

window hooks
means that you do not have full control over
what happens when you try to

send that message.
A WH_CALLWNDPROC
window hook may decide to communicate with

another thread (for example, to log the message).
Boom, what you thought was a simple

message sent
to a window on your thread turned into a cross-thread
message.

https://devblogs.microsoft.com/oldnewthing/20110418-00/?p=10913

2/2

There are many actions that generate message traffic
that may not be obvious at first glance

because
they don’t involve explicitly sending a message.
Invoking a COM method from an

STA thread on an object
which belongs to another apartment
requires the call to be

marshaled to the thread that hosts
the object.
Tinkering with a window’s scroll bars
can

result in
the WS_HSCROLL
or WS_VSCROLL style being added or removed,
which in turn

generates
 WM_STYLECHANGING and
 WM_STYLECHANGED messages.
Obtaining the text from a

window
belonging to another thread in your process
results in synchronous message traffic.

A good rule of thumb is basically to avoid anything that
involves windows belonging to other

threads while holding
a critical section or other resource.
And even windows which belong to

your thread are suspect
(due to hooks and subclassing).

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/02/21/10131989.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2003/08/21/54675.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

