
1/7

April 15, 2011

Lock-free algorithms: The try/commit/(hand off) model
devblogs.microsoft.com/oldnewthing/20110415-00

Raymond Chen

The last lock-free pattern for this week isn’t actually lock-free,
but it does run without

blocking.

The pattern for what I’ll call try/commit/(hand off) is more complicated
than the other

patterns, so I’ll start off by
describing it in words rather than in code,
because the code tends

to make things more complicated.

First, you take the state variable and chop it up into pieces.
You need some bits
to be used as

a lock and as a work has been handed off flag.
And if the work that has been handed off is

complicated,
you may need some more bits to remember the details of the handoff.
A

common way of doing this is to use a pointer-sized state variable,
require that the objects

being pointed to are suitably aligned,
and reusing the bottom bits as flags.
For example, if

you require that the objects be DWORD -aligned,
then the two bottom bits will always be zero

and you can reuse them as flags.

To perform an operation, you first try to lock the state variable.
If you can’t because the state

variable is already locked,
then you record the details of the operation in the state variable

and update it atomically.

If you succeed in locking the state variable, then you perform
the desired operation, but

before you unlock the state variable,
you look to see if any work has been handed off.
(This

hand-off work is the result of attempts to perform the operation
while you held the lock.)
If

there is hand-off work, then you perform that work as well.
Of course, while you’re doing

that, more
hand-off work may arrive.
You can’t unlock the state variable until you’ve
drained

off all the pent-up hand-off work.

The code for this pattern tends to be a tangle of loops since there
is a lot off backing off and

retrying.
Every atomic operation is its own loop, draining the hand-off work
is another loop,

and
any time an InterlockedCompareExchange fails,
you have to undo the work you did

and retry—another loop.

https://devblogs.microsoft.com/oldnewthing/20110415-00/?p=10923

2/7

I trust only about five people in the world to write code
that is this advanced, and I’m not one

of them.
But just to illustrate the principle (although I will certainly
get the details wrong),

here’s an implementation of a synchronization-like
object which I will call a GroupWait for

lack of any other
name.
It has the following operations:

AddWait :
Register an event handle with the group wait.

SignalAll :
Signals all events that are registered with the group wait.
Once an event is

signalled, it is automatically unregistered
from the group wait.
If you want the event to

be signalled at the next call to
 SignalAll you have to re-add it.

The group wait object is just a linked list of
 NODE s containing the handles being waited on.

Actually, this type of object doesn’t need to use the try/commit/hand off
model.
It can be

implemented in a much more straightforward manner by
having AddWait atomically

prepend the node to a list
and having SignalAll atomically steal the list.
There are even

prewritten functions to perform these atomic
linked list operations for you.
But I’m going to

implemented it the complicated way
for demonstration purposes.
In real life, the code would

be much simpler.

Since the bottom two bits of the pointer must be zero due to alignment,
we repurpose them

as a lock bit and a signal bit.
The lock bit is set when the list is locked,
and the signal bit is set

when a signal was requested but had to be
handed off because the list was locked.

// WARNING! IF YOU USE THIS CODE YOU ARE AN IDIOT - READ THE TEXT ABOVE

struct NODE;

NODE *Node(LONG_PTR key) { return reinterpret_cast<NODE*>(key); }

enum {

Locked = 1,

Signalled = 2,

};
struct NODE {

NODE *pnNext;

HANDLE hEvent;

LONG_PTR Key() { return reinterpret_cast<LONG_PTR>(this); }

NODE *Ptr() { return Node(Key() & ~(Locked | Signalled)); }

};
#define NODE_INVALID Node(-1)

class GroupWait {

public:

GroupWait() : m_pnRoot(NULL) { }

~GroupWait();

BOOL AddWait(HANDLE hEvent);

void SignalAll();

private:

NODE *m_pnRoot;

};

http://msdn.microsoft.com/en-us/library/ms684121.aspx

3/7

Since I will be viewing the NODE* as both a pointer
and as a bunch of bits (which I call a

key),
I created some helper methods to save typing.
 Node and Key convert back and forth

between node pointers and keys,
and Ptr strips off the tag bits and returns a usable

pointer.

For notational purposes, a NODE* will be written as
the combination p|S|L where p is a

pointer to the next node, S is the signalled bit,
and L is the lock bit.
The signalled bit is set

to indicate that
we need to signal all the nodes in the list
starting with the next node.
(Think

of the S bit
as being attached to the outgoing arrow.)
For example, this linked list:

 m_pnRoot

 +--------+-+-+

 | * |0|1|

 +---|----+-+-+

 |

 v

 +--------+-+-+---------+

A | * |1|?| hEvent1 |

 +---|----+-+-+---------+

 |

 v

 +--------+-+-+---------+

B | * |?|?| hEvent2 |

 +---|----+-+-+---------+

 |

 v

 +--------+-+-+---------+

C | NULL |?|?| hEvent3 |

 +--------+-+-+---------+

represents a group wait with three registered event handles.
The S bit is clear on the root

pointer,
which means that
nobody has yet requested that hEvent1 be signalled.
On the

other hand,
the S bit is set on node A, which means that
all the events after node A need to

be signaled,
specifically,
 hEvent2 and hEvent3 .
Note that this means that it doesn’t

matter whether the S
bit is set on nodes B or C; those events are
getting set regardless

because the S bit on node A
already requested it.
(In particular, the S bit on the last node

is meaningless
since there are no nodes which come after it.)

The L bit is meaningless on all pointers
other than m_pnRoot .

Okay, let’s start be adding a handle to the wait list:

4/7

BOOL GroupWait::AddWait(HANDLE hEvent)

{

NODE *pnInsert = new(nothrow) NODE;

if (pnInsert == NULL) return FALSE;

pnInsert->hEvent = hEvent;

NODE *pn;

NODE *pnNew;

do {

 pn = InterlockedReadAcquire(&m_pnRoot, NODE_INVALID);
 pnInsert->pnNext = pn;

 pnNew = Node(pnInsert->Key() | (pn->Key() & Locked));

} while (InterlockedCompareExchangeRelease(&m_pnRoot, pnNew, pn) != pn);

return TRUE;

}

To add a handle to the wait list, we just prepend it to the linked list,
being careful to

propagate the L bit into the new pointer
so we don’t accidentally release a lock that

somebody else took.
We add the node with the S bit clear on the
inbound pointer since

nobody has
yet asked for this handle to be signalled.
After setting up the node, we attempt to

insert it into the head of the
list, and if we can’t (because somebody else beat us to it),
then

we restart and try again.
This is a standard try/commit/try again pattern.

Exercise: Is there an ABA race condition here?

The AddWait method illustrates one extreme case of the
try/commit/hand off model, where

there is really nothing to hand off;
we did it all ourselves.
Of course, this does make other

parts of the code trickier since they
have to go back and
deal with nodes that were added

while the list was locked.

The nasty part of the code is in SignalAll .
I’ll present it in pieces.

void GroupWait::SignalAll()

{

NODE *pnCapture;

NODE *pnNew;

do {

 pnCapture = InterlockedReadAcquire(&m_pnRoot, NODE_INVALID);

 if (pnCapture->Key() & Locked) {

 pnNew = Node(pnCapture->Key() | Signaled);

 } else {

 pnNew = Node(Locked);

 }

} while (InterlockedCompareExchangeAcquire(&m_pnRoot,

 pnNew, pnCapture) != pnCapture);

if (pnCapture->Key() & Locked) return;

...

http://blogs.msdn.com/b/oldnewthing/archive/2011/04/12/10152296.aspx

5/7

If the list is locked, then all we do is try to set the S bit
on the root.
If the list is not locked,

then we try to lock it and simultaneously
detach all the nodes by replacing the root pointer

with NULL|0|1 .
Either way, we perform the operation with the try/commit/try again

pattern
until we finally get through.

If the list was locked,
then all we had to do was set the S bit on the root pointer.
Setting the

S bit on the root pointer
means that all the nodes reachable from this pointer
(i.e., all nodes

after the root, which is all nodes)
should be signalled,
which is exactly what we want.
Since

the list is locked, we leave the actual signalling to the code
that unlocks the list.
(This is the

hand off part of try/commit/hand off.)

Exercise:
What if the S bit is already set?
Did we lose a signal?

Otherwise, we are the ones to lock the list.
We also detach the node list, for if another thread

calls
 SignalAll ,
we don’t want that signal to affect the nodes that we’re signalling.

(Otherwise we might end up double-signalling the event.)

...

NODE *pnNext;

NODE *pn;

for (pn = pnCapture->Ptr(); pn; pn = pnNext) {

 SetEvent(pn->hEvent);

 pnNext = pn->pnNext->Ptr();

 delete pn;

}
...

That little fragment above is basically what you would do in a
naïve implementation that

didn’t worry about multithreading:
It walks the list of nodes, signals each event,
and then

frees the node.
The only trick is sending each node pointer through ->Ptr()
to strip off the

tag bits.

Next comes the unlock code.
First, a preparatory step:

...

pnCapture = pnNew;

...

We exchanged pnNew into m_pnRoot up above,
and if that’s still the value of m_pnRoot ,

then it
means that nobody tried to perform any operations while the list
was locked, and we

got off easy.

6/7

...

for (;;) {

 pnNew = Node(pnCapture->Key() & ~Locked);

 if (InterlockedCompareExchangeRelease(&m_pnRoot,

 pnNew, pnCapture) == pnCapture) {

 return;

 }

...

We start a new loop whose job is to
drain off all the
handed-off work items that built up while

the list was locked.
First, we see whether anything has changed since the last time
we looked;

if not, then we unlock and we’re done.
Otherwise, we proceed to pick up all the handed-off

work:

...

 pnCapture = InterlockedReadAcquire(&m_pnRoot, NODE_INVALID);

 NODE *pnNew = Node(pnCapture->Key() & ~(Locked | Signaled));

 NODE **ppn = &pnNew;

 NODE *pn;

 NODE *pnNext;

 BOOL fSignalSeen = FALSE;

 for (pn = pnNew; pn->Ptr(); pn = pnNext) {

 pnNext = pn->Ptr()->pnNext;

 if (fSignalSeen) {

 SetEvent(pn->Ptr()->hEvent);

 delete pn->Ptr();

 } else if (pn->Key() & Signaled) {

 fSignalSeen = TRUE;

 (*ppn) = Node(Locked); // detach but retain lock

 SetEvent(pn->Ptr()->hEvent);

 delete pn->Ptr();

 } else {

 ppn = &pn->Ptr()->pnNext;

 }

 }

} // retry unlock

} // end of function

To drain the handed-off work, we walk the list of nodes,
keeping track of whether we’ve seen

an S bit.
If so, then we signal the event and free the node.
And the first time we see an S

bit, we null out
the inbound pointer to detach the list from the chain so we
do not double-

signal the event in the future.

Once that’s done, we go back and try to unlock again.
Eventually, there will be no more hand-

off work, and we
can finally return.

And that’s it, a demonstration of the try/commit/hand off model.
The basic idea is simple,

but getting all the details right
is what makes your head hurt.

7/7

I leave this sort of thing to the kernel folks, who have the
time and patience and brainpower

to work it all through.
An example of this pattern can be found, for example,
in this talk that

describes the
dismantling of the dispatcher spinlock.

Raymond Chen

Follow

https://channel9.msdn.com/shows/Going+Deep/Arun-Kishan-Farewell-to-the-Windows-Kernel-Dispatcher-Lock/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

