
1/4

April 14, 2011

Lock-free algorithms: The opportunistic cache
devblogs.microsoft.com/oldnewthing/20110414-00

Raymond Chen

Suppose profiling reveals that a specific calculation is responsible
for a significant portion of

your CPU time,
and instrumentation says that most of the time, it’s just being
asked to

calculate the same thing over and over.
A simple one-level cache would do the trick here.

BOOL IsPrime(int n)

{

static int nLast = 1;

static BOOL fLastIsPrime = FALSE;

// if it's the same value as last time, then

// use the answer we cached from last time

if (n == nLast) return fLastIsPrime;

// calculate and cache the new result

nLast = n;

fLastIsPrime = slow_IsPrime(n);

return fLastIsPrime;

}

Of course, this isn’t thread-safe, because if one thread
is pre-empted inside the call to

slow_IsPrime ,
then another thread will see
values for nLast and fLastIsPrime
that

do not correspond to each other.

One solution would be to put a critical section around this code,
but this introduces an

artificial bottleneck:
If the most recent cached result is nLast = 5 ,
 fLastIsPrime =

TRUE ,
and if two threads both try to see whether 5 is prime,
you don’t want those two threads

to serialize against each other.

Another solution is to use
slim reader-writer locks and acquire in shared mode when

checking the cache and in exclusive mode when updating the cache.
But let’s try a lock-free

solution.

We’re going to combine two different techniques.
First, we use the change counter technique

we saw last time when
we investigated try/commit/(try again),
but we also combine it with a

lock that is manipulated
with a try/commit/abandon pattern.

https://devblogs.microsoft.com/oldnewthing/20110414-00/?p=10933
http://mathforum.org/dr.math/faq/faq.prime.num.html
http://msdn.microsoft.com/en-us/library/aa904937.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/12/10152296.aspx

2/4

#define IsLocked(l) ((l) & 1)

BOOL IsPrime(int n)

{

static int nLast = 1;

static BOOL fLastIsPrime = FALSE;

static LONG lCounter = 0;

// see if we can get it from the cache

LONG lCounterStart = InterlockedReadAcquire(&lCounter, -1);

if (!IsLocked(lCounterStart) && n == nLast) {

 BOOL fResult = fLastIsPrime;

 if (InterlockedReadRelease(&lCounter, -1) == lCounterStart)

 return fResult;

}
// calculate it the slow way

BOOL fIsPrime = slow_IsPrime(n);

// update the cache if we can

lCounterStart = lCounter;

if (!IsLocked(lCounterStart) &&

 InterlockedCompareExchangeAcquire(&lCounter,

 lCounterStart+1, lCounterStart) == lCounterStart) {

 nLast = n;

 fLastIsPrime = fIsPrime;

 InterlockedCompareExchangeRelease(&lCounter,

 lCounterStart+2, lCounterStart+1);

}
return fIsPrime;

}

The lCounter consists of
a LOCK bit as the bottom bit
and a change counter in the

remaining bits.
(Choosing the bottom bit as the LOCK bit makes the operations
of clearing

the lock and incrementing the counter very simple.)

There are two parts to this function, the part that reads the
cache and the part that updates

the cache.

To read the cache, we first read the counter with acquire semantics,
so that the reads of

nLast and
 fLastIsPrime will not take place until after we
get the counter.
If the counter

says that the cache is not locked, then we go
ahead and fetch the last value and the last result.

If the last value in the cache matches the value we’re calculating,
then we go ahead and use

the last result.
But as a final check, we make sure that the counter hasn’t changed
while we

were busy looking at the protected variables.
If it has, then it means that we may have read

inconsistent values
and cannot trust the cached result.

If we have a cache miss or we couldn’t access the cache,
we go ahead and calculate the result

the slow way.

3/4

Next, we try to update the cache.
This time, instead of just looking to see whether the cache
is

locked, we try to lock it ourselves by setting the bottom bit.
(If the lock fails, then we skip the

cache update and just return
the value we calculated.)
Once the lock is taken, we update the

protected variables,
then atomically
release the lock and increment the counter.
(This is

where putting the lock in the bottom bit comes in handy:
You can increment the counter by

adding 2 and not worry about
a carry out of the counter bits turning into an accidental lock

bit.)
We use Release semantics so that the
values of the protected values are committed to

memory before
lock bit clears.

Note that in both halves of the function, if the cache is locked,
we just proceed as if there

were no cache at all.
The theory here is that it’s better just to say
“Oh, the heck with it, I’ll just

do it myself”
than to line up and wait to access the cache.
Continuing instead of waiting

avoids problems like priority inversion,
but it also means that you get some spurious cache

misses.
Fortunately, since it’s just a cache, an occasional spurious miss
is not the end of the

world.

You could do something similar with the
 TryEnterCriticalSection function
provided

you’re running Windows NT 4.0 or higher:

BOOL IsPrime(int n)

{

static int nLast = 1;

static BOOL fLastIsPrime = FALSE;

BOOL fHaveAnswer = FALSE;

BOOL fIsPrime;

// see if we can get it from the cache

if (TryEnterCriticalSection(&g_cs)) {

 if (n == nLast) {

 fHaveAnswer = TRUE;

 fIsPrime = fLastIsPrime;

 }

 LeaveCriticalSection(&g_cs);

}
if (fHaveAnswer) return fIsPrime;

// calculate it the slow way

fIsPrime = slow_IsPrime(n);

// update the cache if we can

if (TryEnterCriticalSection(&g_cs)) {

 nLast = n;

 fLastIsPrime = fIsPrime;

 LeaveCriticalSection(&g_cs);

}
return fIsPrime;

}

This does have the disadvantage that multiple readers will lock
each other out, so we can

switch to a slim reader/writer lock
provided we’re running on Window 7 or higher:

http://www.microsoft.com/msj/archive/S413.aspx
http://msdn.microsoft.com/en-us/library/dd405529(v=vs.85).aspx

4/4

BOOL IsPrime(int n)

{

static int nLast = 1;

static BOOL fLastIsPrime = FALSE;

BOOL fHaveAnswer = FALSE;

BOOL fIsPrime;

// see if we can get it from the cache

if (TryAcquireSRWLockShared(&g_lock)) {

 if (n == nLast) {

 fHaveAnswer = TRUE;

 fIsPrime = fLastIsPrime;

 }

 ReleaseSRWLockShared(&g_lock);

}
if (fHaveAnswer) return fIsPrime;

// calculate it the slow way

fIsPrime = slow_IsPrime(n);

// update the cache if we can

if (TryAcquireSRWLockExclusive(&g_lock)) {

 nLast = n;

 fLastIsPrime = fIsPrime;

 LeaveSRWLockExclusive(&g_lock);

}
return fIsPrime;

}

This still has the problem that readers can lock out a cache update.
If the function is hot (and

if it weren’t, why would you switch
to a lock-free algorithm?), and the usage pattern shifts

(say,
instead of checking whether 13 is prime over and over, it starts
checking whether 17 is

prime over and over),
everybody will be so busy reading the cache to see if the cached
value is

17 that nobody will get a chance to update the cache
to actually be 17!

Exercise:
What constraints must be imposed on the protected variables
for this technique to

be successful?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

