
1/3

April 13, 2011

Lock-free algorithms: Update if you can I'm feeling down
devblogs.microsoft.com/oldnewthing/20110413-00

Raymond Chen

A customer was looking for advice on this synchronization problem:

We have a small amount of data that we need to share among
multiple processes.
One way to
protect the data is to use a spin lock.
However, that has potential for deadlock if the process
which holds the spinlock doesn’t get a chance to release it.
For example, it might be suspended
in the debugger,
or somebody might decide to use TerminateProcess
to nuke it.

Any suggestions on how we can share this data without exposure to
these types of horrible
failure modes?
I’m thinking of something like a reader takes the lock,
fetches the values, and
then checks at status at the end of
tell if the data is valid.
Meanwhile, a writer tries to take the
lock with a timeout,
and if the timeout fires, then the writer just goes ahead
anyway and updates
the values, and somehow sets the status
on the reader so it knows that the value is no good and
it
should try again.
Basically, I don’t want either the reader or writer to get
stuck indefinitely if a
developer, say, just happens to break
into the debugger at the worst possible time.

This can be solved with a publishing pattern.
When you want to update the values,
you

indicate that new values are ready by publishing their new location.

Let’s say that the data that needs to be shared is a collection
of four integers.

struct SHAREDDATA {

int a, b, c, d;

};

Assume that there is
a practical limit on how often the value can change;
this is usually a safe

assumption because you’ll have some
sort of external rate limiter, like “This value changes
in

response to a user action.”
(Even if there is no such limit, most solutions will simply
posit

one.
For example, the
SLIST functions
simply assume that a processor won’t get locked out

more
than 65535 times in a row.)
In our case, let’s say that the value will not change more

than
64 times in rapid succession.

https://devblogs.microsoft.com/oldnewthing/20110413-00/?p=10943
http://msdn.microsoft.com/en-us/library/ms684121.aspx

2/3

#define SHAREDDATA_MAXCONCURRENT 64

SHAREDDATA g_rgsd[SHAREDDATA_MAXCONCURRENT];

UINT g_isd; // current valid value

void GetSharedData(__out SHAREDDATA *psd)

{

*psd = g_rgsd[g_isd];

}

Reading the data simply retrieves the most recently
published value.
The hard part is

publishing the value.

Actually, it’s not hard at all.

LONG g_isdNext = 1;

void UpdateSharedData(__in const SHAREDDATA *psd)

{

UINT isd = (UINT)InterlockedIncrementAcquire(&g_isdNext);

isd %= SHAREDDATA_MAXCONCURRENT;

g_rgsd[isd] = *psd;

InterlockedExchange(&g_isdNext, isd);

}

Publishing the data is a simple matter of obtaining a slot
for the data, using Interlocked‐

Increment to
get a unique location to store the data,
or at least least unique until

SHAREDDATA_MAXCONCURRENT - 1 intervening
publications have occurred.
We store our

results into the memory we obtained
and then publish the new index.
The publication needs

to be done with release semantics,
but since there is no
 InterlockedExchangeRelease ,
we

just do a full barrier exchange.

Note that the update is not atomic with the read.
A processor can call GetSharedData ,

revise the values, then publish them,
only to find that it overwrite a publication from
another

processor.
If the new values are dependent on the old values
(for example, if they are a

running total),
then you just lost an update.

Note also that if two threads try to update at the same
time, it’s pretty much random which

set of values you get
since it’s last writer wins.

It so happens that in this particular case,
the new values had nothing to do with the old

values,
so there was no problem with lost updates.
And in practice, only one process updated

the values at a time.
(There is a master controller who updates the values, and everybody
else

just reads them.)
Therefore, this simple method meets the requirements.

Exercise:
How would you adapt this solution if the new values depended on the
old values?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

