
1/3

April 12, 2011

Lock-free algorithms: The try/commit/(try again) pattern
devblogs.microsoft.com/oldnewthing/20110412-00

Raymond Chen

The singleton constructor pattern and the
InterlockedMultiply example we saw some time

ago
are really special cases of the more general pattern which I’ll call
try/commit/(try again).

I don’t know if this pattern has a real name,
but that’s what I’m calling it for today.

The general form of this pattern goes like this:

for (;;) {

// capture the initial value of a shared variable we want to update

originalValue = sharedVariable;

... capture other values we need to perform the operation ...

... these values must be indepedent of sharedVariable ...

newValue = ... calculate the desired new result

 based on originalValue and other captured values ...

// Xxx can be Acquire, Release, or null

if (InterlockedCompareExchangeXxx(

 &sharedVariable,

 newValue, oldValue) == oldValue) {

 break; // update was successful

}
... clean up newValue ...

} // loop back and try again

We calculate the desired new value based on the initial value,
combining it with other values

that vary depending on the operation
you want to perform,
and then use an Interlocked‐

CompareExchange
to update the shared value,
provided the variable hasn’t changed from

its initial value.
If the value did change, then that means another thread raced against
us and

updated the value before we could;
in that case, we go back and try it again.
Maybe the next

time through we won’t collide against somebody.

Note that the try/commit/try again pattern is unfair.
There’s no assurance that the thread

that has been trying to update
the value for the longest time will win the next race.
(This is a

property common to most lock-free algorithms.)

https://devblogs.microsoft.com/oldnewthing/20110412-00/?p=10963
http://blogs.msdn.com/oldnewthing/archive/2004/09/15/229915.aspx

2/3

The InterlockedMultiply function
follows this pattern very closely:
The other value

required to perform the operation is simply
the multiplier, which is a parameter to the

function and therefore
is independent of the shared variable.
The new value is simply the

product,
and if we are unable to update the shared value (because somebody
else modified

it), we just start over.

A variation of try/commit/try again is try/commit/abandon.
In this pattern, there is no loop.

If the exchange fails, you just give up and return a failure code.
The function TryEnter‐

CriticalSection uses the
try/commit/abandon pattern.
(It also uses the Acquire version

of
 InterlockedCompareExchange
for reasons which should be obvious.)

Our singleton pattern is another special case of try/commit/try again
where the “try again” is

optimized out because we know what the result
of “try again” is going to be, so we don’t

actually have to do it.
In the singleton pattern case, the
 InterlockedCompareExchange
is a

Release because the new value depends on other memory locations.

Normally, the shared variable is an integer rather than a pointer,
because a pointer is subject

to the ABA problem if you incorporate
the pointed-to data into your calculations.
We get

away with it in the singleton pattern case because the value
change is unidirectional: It goes

from NULL to
something, and once it’s something it never changes again.
If the value of the

shared variable can change in more general ways,
then you have to be more careful if you use

a pointer
as the shared variable.
(The most common solution is to make the shared variable

not just
a pointer but a pointer plus a counter which increments at each operation.)

Here’s another use of the try/commit/try again pattern, using
a change counter as the shared

variable.
First, two helper functions:

LONG InterlockedReadAcquire(__in LONG *pl, __in LONG lUnlikely)

{

 return InterlockedCompareExchangeAcquire(pl, lUnlikely, lUnlikely);

}

LONG InterlockedReadRelease(__in LONG *pl, __in LONG lUnlikely)

{

 return InterlockedCompareExchangeRelease(pl, lUnlikely, lUnlikely);

}

Although direct reads and writes of properly aligned LONG s
are atomic, the operations are

not synchronized and impose no
memory ordering semantics.
To read a value with specific

semantics,
I pull a sneaky trick:
I perform an
 InterlockedCompareExchange with the

desired memory ordering semantics, passing the same value as the
comparand and the

exchange;
therefore, the operation, even if successful, has no computational effect.

if (*pl == lUnlikely) *pl = lUnlikely;

3/3

To avoid dirtying the cache line,
I use an unlikely value as the comparand/exchange,
so most

of the time, the comparison fails and no memory is written.
(This trick doesn’t help on all

architectures, but it doesn’t hurt.)

Okay, back to the change counter example:

LONG g_lColorChange;

...

case WM_SYSCOLORCHANGE:

InterlockedIncrement(&g_lColorChange);

...

int CalculateSomethingAboutSystemColors()

{

LONG lColorChangeStart;

do {

 lColorChangeStart = InterlockedReadAcquire(&g_lColorChange, -1);

 COLORREF clrWindow = GetSysColor(COLOR_WINDOW);

 COLORREF clrHighlight = GetSysColor(COLOR_HIGHLIGHT);

 ... other computations involving GetSysColor(...)

} while (InterlockedReadRelease(

 &g_lColorChange, -1) != lColorChangeStart);

return iResult;

}

We capture the color change counter and then begin doing our
calculations.
We capture the

value with acquire semantics so that we get the value
before we start reading the system

colors.
When we’re done,
we compare the value of the change counter against the value we

captured.
If it’s different, then that means that the colors changed while
we were doing our

calculations, so our calculations are all messed up.
In that case,
we go back and try it again.

This technique does assume that you won’t get into a situation where
one thread manages to

increment the change counter 4 billion times
before the other thread manages to run.
This is

not a problem in practice.
For example, in this case, it’s reasonable to assume that
nobody is

going to change their system
colors 4 billion times within a single thread quantum.

Next time,
I’ll show a different variation on try/commit/abandon
which might be suitable for

simple caches.

Exercise:
Criticize the following:
“I noticed that there is no interlocked read operation,
but

there is InterlockedOr ,
so my plan is to perform an interlocked read by or’ing with zero.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

