
1/4

April 8, 2011

Patterns for using the InitOnce functions
devblogs.microsoft.com/oldnewthing/20110408-01

Raymond Chen

Since writing lock-free code is is
such a headache-inducer,
you’re probably best off making

some other people suffer the headaches
for you.
And those other people are the kernel folks,

who have developed
quite a few lock-free building blocks so you don’t have to.
For example,

there’s a collection of functions for manipulating
interlocked lists.
But today we’re going to

look at the
one-time initialization functions.

The simplest version of the one-time initialization functions
isn’t actually lock-free,
but it

does implement the double-checked-lock pattern for you
so you don’t have to worry about

the details.
The usage pattern for the
InitOnceExecuteOnce function
is pretty simple.
Here

it is in its simplest form:

int SomeGlobalInteger;

BOOL CALLBACK ThisRunsAtMostOnce(

 PINIT_ONCE initOnce,

 PVOID Parameter,

 PVOID *Context)

{

 calculate_an_integer(&SomeGlobalInteger);

 return TRUE;

}

void InitializeThatGlobalInteger()

{

 static INIT_ONCE initOnce = INIT_ONCE_STATIC_INIT;

 InitOnceExecuteOnce(&initOnce,

 ThisRunsAtMostOnce,

 nullptr, nullptr);

}

In the simplest form, you give
 InitOnceExecuteOnce an
 INIT_ONCE structure (where it

records
its state),
and a callback.
If this is the first time that
 InitOnceExecuteOnce is

called
for a particular
 INIT_ONCE structure,
it calls the callback.
The callback can do

whatever it likes,
but presumably it’s doing some one-time initialization.
If another thread

calls
 InitOnceExecuteOnce on the same
 INIT_ONCE structure,
that other thread will wait

until the first thread is finished
its one-time execution.

https://devblogs.microsoft.com/oldnewthing/20110408-01/?p=10983
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/07/10150728.aspx#10151021
http://msdn.microsoft.com/en-us/library/ms684121(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa363808
http://msdn.microsoft.com/en-us/library/ms683493(v=VS.85).aspx

2/4

We can make this a tiny bit fancier by supposing that
the calculation of the integer can fail.

BOOL CALLBACK ThisSucceedsAtMostOnce(

 PINIT_ONCE initOnce,

 PVOID Parameter,

 PVOID *Context)

{

 return SUCCEEDED(calculate_an_integer(&SomeGlobalInteger));

}

BOOL TryToInitializeThatGlobalInteger()

{

 static INIT_ONCE initOnce = INIT_ONCE_STATIC_INIT;

 return InitOnceExecuteOnce(&initOnce,

 ThisSucceedsAtMostOnce,

 nullptr, nullptr);

}

If your initialization function returns FALSE ,
then the initialization is considered to have

failed,
and the next time somebody calls
 InitOnceExecuteOnce ,
it will try to initialize

again.

A slightly fancier use of the
 InitOnceExecuteOnce function
takes advantage of the

Context parameter.
The kernel folks noticed that an
 INIT_ONCE structure in the

“initialized”
state has a lot of unused bits,
and they’ve offered to let you use them.
This is

convenient if the thing you’re initializing is a pointer
to a C++ object, because it means that

there’s only one thing
you need to worry about instead of two.

BOOL CALLBACK AllocateAndInitializeTheThing(

 PINIT_ONCE initOnce,

 PVOID Parameter,

 PVOID *Context)

{

 *Context = new(nothrow) Thing();

 return *Context != nullptr;

}

Thing *GetSingletonThing(int arg1, int arg2)

{

 static INIT_ONCE initOnce = INIT_ONCE_STATIC_INIT;

 void *Result;

 if (InitOnceExecuteOnce(&initOnce,

 AllocateAndInitializeTheThing,

 nullptr, &Result))

 {

 return static_cast<Thing*>(Result);

 }

 return nullptr;

}

3/4

The final parameter to
 InitOnceExecuteOnce function
receives the magic almost-pointer-

sized data that the function
will remember for you.
Your callback function passes this magic

value back through
the Context parameter,
and then
 InitOnceExecuteOnce gives it
back

to you as the Result .

As before, if two threads call
 InitOnceExecuteOnce simultaneously
on an uninitialized

INIT_ONCE structure,
one of them will call the initialization function and the other will wait.

Up until now, we’ve been looking at the synchronous initialization
patterns.
They aren’t lock-

free:
If you call InitOnceExecuteOnce
and initialization of the the INIT_ONCE structure

is
already in progress, your call will wait until that initialization
attempt completes (either

successfully or unsuccessfully).

More interesting is the asynchronous pattern.
Here it is, as applied to our Singleton‐

Manager exercise:

SingletonManager(const SINGLETONINFO *rgsi, UINT csi)

 : m_rgsi(rgsi), m_csi(csi),

 m_rgio(new INITONCE[csi]) {

 for (UINT iio = 0; iio < csi; iio++) {

 InitOnceInitialize(&m_rgio[iio]);

 }

}
...

// Array that describes objects we've created

// runs parallel to m_rgsi

INIT_ONCE *m_rgio;

};
ITEMCONTROLLER *SingletonManager::Lookup(DWORD dwId)

{

... same as before until we reach the "singleton constructor pattern"

void *pv = NULL;

BOOL fPending;

if (!InitOnceBeginInitialize(&m_rgio[i], INIT_ONCE_ASYNC,

 &fPending, &pv)) return NULL;

if (fPending) {

 ITEMCONTROLLER *pic = m_rgsi[i].pfnCreateController();

 if (pic && InitOnceComplete(&m_rgio[i],

 INIT_ONCE_ASYNC, pic)) {

 pv = pic;

 } else {

 // lost the race - discard ours and retrieve the winner

 delete pic;

 InitOnceBeginInitialize(&m_rgio[i], INIT_ONCE_CHECK_ONLY,

 &fPending, &pv);

 }

}
return static_cast<ITEMCONTROLLER *>(pv);

}

4/4

The pattern for asynchronous initialization is as follows:

Call InitOnceBeginInitialize
in async mode.

If it returns fPending == FALSE ,
then initialization has already been performed and

you can
go ahead and use the result passed back in the final parameter.

Otherwise, initialization is pending.
Do your initialization, but remember that since this

is a lock-free
algorithm, there can be many threads trying to initialize
simultaneously,

so you have to be careful
how you manipulate global state.
This pattern works best if

initialization takes the form of
creating a new object (because that means multiple

threads
performining initialization are each creating independent objects).

If you successfully created the object,
call InitOnceComplete with the result
of your

initialization.

If InitOnceComplete succeeds,
then you won the initialization race, and you’re done.

If InitOnceComplete fails,
then you lost the initialization race and should clean up

your
failed initialization.
In that case, you should call
 InitOnceBeginInitialize
one

last time to get the answer from the winner.

it’s conceptually simple; it just takes a while to explain.
but at least now it’s in recipe form.

Exercise: Instead of calling
 InitOnceComplete with
 INIT_ONCE_INIT_FAILED ,
what

happens if the function simply returns
without ever completing the init-once?

Exercise:
What happens if two threads try to perform
asynchronous initialization and the

first one
to complete fails?

Exercise:
Combine the results of the first two exercises
and draw a conclusion.

Update:
I got it wrong in the case of a failed asynchronous
initialization.
You’re just

supposed to abandon the initialization
rather than report failure.
The code and discussion

have been updated.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/04/07/10150728.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

