
1/4

April 8, 2011

Lock-free algorithms: The singleton constructor (answer
to exercises)

devblogs.microsoft.com/oldnewthing/20110408-00

Raymond Chen

A few days ago,
I asked you to make an existing class multithread-safe.
The class caches

objects called SINGLETONINFO
which are indexed by a 32-bit ID.
The cache is implemented

as an array that dynamically resizes as
more items are added to it.
A naïve multithreaded

version might use a slim reader-writer lock
with shared access on reads, exclusive access on

writes,
and mixed access on the treacherous
“create if it doesn’t already exist” path.

Let’s see.
First of all, the function doesn’t allocate the memory for the cache
until somebody

actually tries to look something up.
But duh, that’s the whole point of the class: To look up

things!
The only time this lazy-initialization actually provides a benefit is
if somebody creates

a SingletonManager ,
calls no methods on it,
and then destroys it.

This doesn’t happen in practice, and even if it did,
it’s certainly not a scenario we’re going to

optimize for.
Get rid of the lazy-initialization of the cache; it makes multithreading

unnecessarily complicated.

Second, since the only way an ITEMCONTROLLER can
get into the cache is via the

SINGLETONINFO ,
if a SingletonManager is told,
“Here are 30 item IDs and their

corresponding controller creation
functions,”
then the cache can never hold more than 30

items.
If you only know how to create 30 items, and you never create
more than one copy of

each item, then you’re never going to create
more than 30 items.

Therefore, instead of managing a dynamically-growing array,
we can allocate a fixed-size

array at construction
of length equal to the number of SINGLETONINFO elements.
This

avoids having to lock around the code that reallocates the array.
Since the array length is in

the range 30–50, we don’t have
the problem of allocating megabytes of memory to track just

a few objects.
In the worst case, we allocate a 50-element cache.

Next, we can store each ITEMCONTROLLER in the same
position in the cache array as it exists

in the SINGLETONINFO
array.

https://devblogs.microsoft.com/oldnewthing/20110408-00/?p=10993
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/06/10150261.aspx

2/4

With these simplifications, we see that we don’t need to do any
locking or complicated

duplicate-detection.
After locating the ID in the SINGLETONINFO array,
look at the

corresponding entry in the cache array
and perform a singleton initialization there.

struct ITEMCONTROLLER;

struct SINGLETONINFO {

DWORD dwId;

ITEMCONTROLLER *(*pfnCreateController)();

};
class SingletonManager {

public:

// rgsi is an array that describes how to create the objects.

// It's a static array, with csi in the range 20 to 50.

SingletonManager(const SINGLETONINFO *rgsi, UINT csi)

 : m_rgsi(rgsi), m_csi(csi),

 m_rgpic(new ITEMCONTROLLER*[csi]) { }

~SingletonManager() { ... }

ITEMCONTROLLER *Lookup(DWORD dwId);

private:

const SINGLETONINFO *m_rgsi;

int m_csi;

// Array that describes objects we've created

// runs parallel to m_rgsi

ITEMCONTROLLER *m_pic;

};
ITEMCONTROLLER *SingletonManager::Lookup(DWORD dwId)

{

int i;

// Convert ID to index

for (i = 0; i = m_csi) return NULL; // not something we know about

// Singleton constructor pattern

if (!m_rgpic[i]) {

 ITEMCONTROLLER *pic = m_rgsi[i].pfnCreateController();

 if (!pic) return NULL;

 if (InterlockedCompareExchangePointerRelease(

 &reinterpret_cast<PVOID&>(m_rgpic[i]),

 pic, NULL) != 0) {

 delete pic; // lost the race - destroy the redundant copy

 }

}
MemoryBarrier();

return m_rgpic[i];

}

Comments on proposed solutions:
Gabe pointed out
that the reallocation was a sticking

point
which made a lock-free implementation difficult if not impossible.
Credit to him for

recognizing the problem.

Thorsten proposed using a linked list instead of an array
to avoid the reallocation problem.

http://blogs.msdn.com/b/oldnewthing/archive/2011/04/06/10150261.aspx#10150544
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/06/10150261.aspx#10150881

3/4

Ray Trent reminded us of the C++ function-local static technique,
which works if it’s what

you need, but it has its own problems,
such as lack of thread-safety (up until perhaps two

weeks ago),
and the fact that it doesn’t generalize to a solution
to the exercise.
The not-

thread-safe-ness of C++ static initialization was called out
as a feature in early versions of the

C++ language specification
(to permit recursive initialization).
This was revised in the ISO

version of C++, which declared
that if control enters a function which is in the middle of

initializing its statics,
the behavior is undefined.
I don’t know what C++0x has to say about

the subject,
but seeing as the standard
was approved only two weeks ago
and hasn’t even

been formally published yet,
it seems premature to expect all compilers to conform to any

new multi-threading semantics.

Note that the function-local static technique works only if you want a
process-wide singleton.

If you need a singleton with a tighter scope (say, “one object per thread”
or “one object per

transaction”), then the function-local static technique will
not work.
Which after all was the

point of the SingletonManager class:
To manage singletons relative to its own scope, not

globally.
If you had wanted global singletons, then you wouldn’t need a singleton
manager;

you would just have each object manage its own singleton.

To elaborate:
Suppose you have an object with a bunch of components.
Most clients don’t use

all the components, so you want to lazy-create
those components.
Say, each Transaction

can have an error log file,
but you don’t want
to create the error log file until an error occurs.

On the other hand, you want all the errors for a single transaction
to go into the same log file.

class LogFile : public ITEMCONTROLLER

{

public:

 static ITEMCONTROLLER *Create() { return new LogFile(); }

};
const SINGLETONINFO c_rgsiTransactions[] = {

 { LOGFILE_ID, LogFile::Create };

};
class Transaction

{

public:

 Transaction()

 : m_singletons(c_rgsiTransactions,

 ARRAYSIZE(c_rgsiTransactions))

 { }

 void LogError(blah blah)

 {

 LogFile *plog = static_cast<LogFile*>

 (m_singletons.Lookup(LOGFILE_ID));

 if (plog) plog->Log(blah blah);

 }

private:

 SingletonManager m_singletons;

};

http://blogs.msdn.com/b/oldnewthing/archive/2011/04/06/10150261.aspx#10150587
http://herbsutter.com/2011/03/25/we-have-fdis-trip-report-march-2011-c-standards-meeting/

4/4

The singleton manager makes sure that each transaction has at most one
log file.
But we can’t

use the function-local static technique in
 LogFile::Create ,
because we want multiple log

files in general, just a singleton log file
per transaction.
If we had used the function-local

static technique in
 LogFile::Create , then all errors would have been logged
into a giant

log file instead of a separate log file per transaction.

Scott tried to update the singleton atomically
but forgot about the thread safety of the

reallocation,
and the solution had its own holes too.
Alex Grigoriev’s solution is the classic

back-off-and-retry algorithm
modulo forgetting to protect against reallocation.

nksingh was the first to observe that the reallocation could be removed,
and effectively came

up with the solution presented here.
(But missed the further optimization that the dwId

member
was redundant.)
He also recommended using the InitOnce functions,
which is

something I too recommend.
We’ll look at the InitOnce functions
in a separate article
since

this one is getting kind of long.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/04/06/10150261.aspx#10150669
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/06/10150261.aspx#10150678
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/06/10150261.aspx#10150680
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/08/10151258.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

