
1/5

April 7, 2011

Lock-free algorithms: The one-time initialization
devblogs.microsoft.com/oldnewthing/20110407-00

Raymond Chen

A special case of
the singleton constructor
is simply lazy-initializing a bunch of variables.
In a

single-threaded application you can do something like this:

// suppose that any valid values for a and b stipulate that

// a ≥ 0 and b ≥ a. Therefore, -1 is never a valid value,

// and we use it to mean "not yet initialized".

int a = -1, b = -1;

void LazyInitialize()

{

if (a != -1) return; // initialized already

a = calculate_nominal_a();

b = calculate_nominal_b();

// Adjust the values to conform to our constraint.

a = max(0, a);

b = max(a, b);

}

This works fine in a single-threaded program, but if the
program is multi-threaded, then two

threads might end up
trying to lazy-initialize the variables, and there are
race conditions

which can result in one thread using
values before they have been initialized:

Thread 1 Thread 2

if (a != -1) [not taken]

a = calculate_nominal_a(); // returns
2

if (a != -1) return; // premature
return!

Observe that if the first thread is pre-empted after
the value for a is initially set,
the second

thread will think that everything is initialized
and may end up using an uninitialized b .

https://devblogs.microsoft.com/oldnewthing/20110407-00/?p=11003
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/06/10150261.aspx

2/5

“Aha,” you say, “that’s easy to fix.
Instead of a ,
I’ll just use b to tell if initialization is

complete.”

void LazyInitialize()

{

if (b != -1) return; // initialized already (test b, not a)

a = calculate_nominal_a();

b = calculate_nominal_b();

// Adjust the values to conform to our constraint.

a = max(0, a);

b = max(a, b);

}

This still suffers from a race condition:

Thread 1 Thread 2

if (b != -1) [not taken]

a = calculate_nominal_a(); // returns
2

b = calculate_nominal_b(); // returns
1

if (b != -1) return; // premature
return!

“I can fix that too.
I’ll just compute the values of a and b
in local variables, and update the

globals only after the final
values have been computed.
That way, the second thread won’t see

partially-calculated values.”

void LazyInitialize()

{

if (b != -1) return; // initialized already

// perform all calculations in temporary variables first

int temp_a = calculate_nominal_a();

int temp_b = calculate_nominal_b();

// Adjust the values to conform to our constraint.

temp_a = max(0, temp_a);

temp_b = max(temp_a, temp_b);

// make the temporary values permanent

a = temp_a;

b = temp_b;

}

Nearly there,
but there is still a race condition:

3/5

Thread 1 Thread 2

if (b != -1) [not taken]

temp_a = calculate_nominal_a(); //
returns 2

temp_b = calculate_nominal_b(); //
returns 1

temp_a = max(0, temp_a); // temp_a = 2

temp_b = max(temp_a, temp_b); //
temp_b = 2

a = temp_a; // store issued to memory

b = temp_b; // store issued to memory

store of b completes to memory

if (b != -1) return; // premature
return!

store of a completes to memory

There is no guarantee that the assignment b = 2 will
become visible to other processors

after the assignment
 a = 2 .
Even though the store operations are issued in that order,
the

memory management circuitry might
complete the memory operations in the opposite order,

resulting in Thread 2 seeing a = -1 and b = 2 .

To prevent this from happening, the store to b must
be performed with
Release semantics,

indicating that all prior memory stores must complete before
the store to b can be made

visible to other processors.

http://en.wikipedia.org/wiki/Memory_barrier#An_illustrative_example
http://blogs.msdn.com/oldnewthing/archive/2008/10/03/8969397.aspx

4/5

void LazyInitialize()

{

if (b != -1) return; // initialized already

// perform all calculations in temporary variables first

int temp_a = calculate_nominal_a();

int temp_b = calculate_nominal_b();

// Adjust the values to conform to our constraint.

temp_a = max(0, temp_a);

temp_b = max(temp_a, temp_b);

// make the temporary values permanent

a = temp_a;

// since we use "b" as our indication that

// initialization is complete, we must store it last,

// and we must use release semantics.

InterlockedCompareExchangeRelease(

 reinterpret_cast<LONG*>&b, temp_b, -1);

}

If you look at the final result,
you see that this is pretty much a re-derivation of the
singleton

initialization pattern:
Do a bunch of calculations off to the side, then
publish the result with a

single
 InterlockedCompareExchangeRelease
operation.

The general pattern is therefore

void LazyInitializePattern()

{

if (global_signal_variable != sentinel_value) return;

... calculate values into local variables ...

globalvariable1 = temp_variable1;

globalvariable2 = temp_variable2;

...

globalvariableN = temp_variableN;

// publish the signal variable last, and with release

// semantics to ensure earlier values are visible as well

InterlockedCompareExchangeRelease(

 reinterpret_cast<LONG*>&global_signal_variable,

 temp_signal_variable, sentinel_value);

}

If this all is too much for you
(and given some of the subtlety of double-check-locking
that I

messed up the first time through,
it’s clearly too much for me),
you can let the Windows

kernel team do the thinking
and use the
one-time initialization functions,
which encapsulate

all of this logic.
(My pal
Doron
called out the one-time initialization functions
a while back.)

Version 4 of the .NET Framework has corresponding functionality
in the
Lazy<T> class.

Exercise:
What hidden assumptions are being made about the functions

calculate_nominal_a and
 calculate_nominal_b ?

Exercise:
What are the consequences if we use
 InterlockedExchange
instead of

InterlockedCompareExchangeRelease ?

http://msdn.microsoft.com/en-us/library/aa363808.aspx
http://blogs.msdn.com/doronh/
http://blogs.msdn.com/doronh/archive/2006/11/29/support-for-double-checked-locking.aspx
http://msdn.microsoft.com/en-us/library/dd997286.aspx

5/5

Exercise:
In the final version of LazyInitialize , are the variables
 temp_a and

temp_b really necessary,
or are they just leftovers from previous attempts at fixing
the race

condition?

Exercise:
What changes (if any) are necessary to the above pattern
if the global variables are

pointers? Floating point variables?

Update: See discussion below
between Niall and Anon
regarding the need for acquire

semantics on the initial read.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/04/07/10150728.aspx#10151639
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

