
1/5

April 6, 2011

Lock-free algorithms: The singleton constructor
devblogs.microsoft.com/oldnewthing/20110406-00

Raymond Chen

The first half may be familiar to many (most?) readers,
but there’s an interesting exercise at

the bottom.

A very useful pattern for the Interlocked* functions is
lock-free lazy initialization via

InterlockedCompareExchangePointerRelease .
Yes, that’s a really long function name,

but it turns out
every part of it important.

Widget *g_pwidCached;

Widget *GetSingletonWidget()

{

Widget *pwid = g_pwidCached;

if (!pwid) {

 pwid = new(nothrow) Widget();

 if (pwid) {

 Widget *pwidOld = reinterpret_cast<Widget*>

 (InterlockedCompareExchangePointerRelease(

 &reinterpret_cast<PVOID&>(g_pwidCached),

 pwid, NULL));

 if (pwidOld) {

 delete pwid; // lost the race - destroy the redundant copy

 pwid = pwidOld; // use the old one

 }

 }

}
return pwid;

}

This is a double-check lock, but without the locking.
Instead of taking lock when doing the

initial construction,
we just let it be a free-for-all over who gets to create the
object.
If five

threads all reach this code at the same time,
sure, let’s create five objects.
After everybody

creates what they think is the winning object,
they called
 InterlockedCompareExchange‐

PointerRelease
to attempt to update the global pointer.

The parts of the name of the
 InterlockedCompareExchangePointerRelease
function

work like this:

https://devblogs.microsoft.com/oldnewthing/20110406-00/?p=11023

2/5

Interlocked : The operation is atomic.
This is important to avoid two threads

successfully updating
the value of g_pwidCached .

Compare : The value in g_pwidCached
is compared against NULL .

Exchange :
If the values are equal, then
 g_pwidCached is set to pwid .
This,

combined with the comparison, ensures that only one
thread gets to set the value of

g_pwidCached .

Pointer :
The operations are on pointer-sized data.

Release :
The operation takes place with
release semantics.
This is important to

ensure that the pwid we created
is fully-constructed before we publish its pointer to

other
processors.

This technique is suitable when it’s okay to let multiple threads
try to create the singleton

(and have all the losers destroy
their copy).
If creating the singleton is expensive or has

unwanted
side-effects, then you don’t want to use the free-for-all algorithm.

Bonus reading:

One-Time Initialization
helper functions save you from having to write all this code

yourself.
They deal with all the synchronization and memory barrier
issues, and

support both the one-person-gets-to-initialize
and the free-for-all-initialization models.

A lazy initialization primitive for .NET
provides a C# version of the same.

Okay, now here’s the interesting exercise.
This is an actual problem I helped out with,

although details have been changed for expository purposes.

http://blogs.msdn.com/oldnewthing/archive/2008/10/03/8969397.aspx
http://msdn.microsoft.com/en-us/library/aa363808.aspx
http://www.bluebytesoftware.com/blog/2007/06/09/ALazyInitializationPrimitiveForNET.aspx

3/5

We have a data structure which manages a bunch of singleton objects,
let’s say that they are
instances of a structure
called ITEMCONTROLLER and they are keyed by a 32-bit ID.
We’re
looking for design suggestions on making it thread-safe.
The existing code goes like this
(pseudocode):

4/5

struct ITEMCONTROLLER;

struct SINGLETONINFO {

DWORD dwId;

ITEMCONTROLLER *(*pfnCreateController)();

};
class SingletonManager {

public:

// rgsi is an array that describes how to create the objects.

// It's a static array, with csi in the range 20 to 50.

SingletonManager(const SINGLETONINFO *rgsi, UINT csi)

 : m_rgsi(rgsi), m_csi(csi),

 m_rgcs(NULL), m_ccs(0), m_ccsAlloc(0) { }

~SingletonManager() { ... }

ITEMCONTROLLER *Lookup(DWORD dwId);

private:

struct CREATEDSINGLETON {

 DWORD dwId;

 ITEMCONTROLLER *pic;

};

private:

const SINGLETONINFO *m_rgsi;

int m_csi;

// Array that describes objects we've created

CREATEDSINGLETON *m_rgcs;

int m_ccs;

};
ITEMCONTROLLER *SingletonManager::Lookup(DWORD dwId)

{

int i;

// See if we already created one

for (i = 0; i < m_ccs; i++) {

 if (m_rgcs[i].dwId == dwId)

 return m_rgcs[i].pic;

}
// Not yet created - time to create one

ITEMCONTROLLER *pic;

for (i = 0; i < m_rgsi; i++) {

 if (m_rgsi[i].dwId == dwId) {

 pic = m_rgsi[i].pfnCreateController();

 break;

 }

}
if (pic == NULL) return;

... if m_rgcs == NULL then allocate it and update m_ccsAlloc

... else realloc it bigger and update m_ccsAlloc

// append to our array so we can find it next time

m_rgcs[m_ccs].dwId = dwId;

m_rgcs[m_ccs].pic = pic;

m_ccs++;

return pic;

}

5/5

In words, the SingletonManager takes an array
of SINGLETONINFO structures, each of
which
contains an ID and a function to call to create the object
with that ID.
To look up an
entry, we first check if we already created one;
if so, then we just return the existing one.
Otherwise, we create the object (using pfnCreateController)
and add it to our array of
created objects.

Our initial inclination is to put a critical section around
the entire Lookup function, but maybe
there’s
something more clever we can do here.
Maybe a
slim reader-writer lock?

Bonus chatter:
Although it’s the case on Windows that
the plain versions of the interlocked

functions impose both acquire
and release semantics,
other platforms may not follow

Windows’ lead.
In particular,
on the XBOX360 platform, the plain versions of the interlocked

functions impose neither acquire nor release semantics.
I don’t know what the rules are for

Windows CE.

Erratum:
I once knew but subsequently forgot that the
singleton pattern described in this

article
(with the InterlockedCompareExchangePointer)
is
not safe on some CPU

architectures.
An additional MemoryBarrier() needs to be inserted
after the fetch of the

single pointer to ensure that indirections
through it will retrieve the new values and not any

cached old values:

Widget *GetSingletonWidget()

{

Widget *pwid = g_pwidCached;

if (!pwid) {

 ...

} else {

 // Ensure that dereferences of pwid access new values and not old

 // cached values.

 MemoryBarrier();

}
return pwid;

}

The discussion of lock-free algorithms continues
(with probably more errors!) next time.

Raymond Chen

Follow

http://msdn.microsoft.com/en-us/library/aa904937.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/10/03/8969397.aspx
http://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

