
1/2

April 6, 2011

Lock-free algorithms: Choosing a unique value
(solutions)

devblogs.microsoft.com/oldnewthing/20110406-01

Raymond Chen

Last time, I left a
warm-up exercise
consisting of a code fragment which tries to compute a

unique
process-wide value.
Here it is again:

dwUniqueId = InterlockedCompareExchange(&g_dwUniqueId,

 g_dwUniqueId+1,

 g_dwUniqueId);

It may be easier to enumerate what the function does right
rather than what it does wrong.

Um, the words are correctly-spelled.

That’s about it.

Damien was the first to note that
the author basically reimplemented Interlocked‐

Increment.
Poorly.

As we saw earlier, the algorithm for performing complex calculations with
interlocked

functions is
(capture, compute, compare-exchange, retry).
But the above code didn’t do any

of these things.

By failing to capture the values, the code is vulnerable to another
thread modifying the

g_dwUniqueId value simultaneously.
This means that the computation step can fail,

because the inconsistent reads of g_dwUniqueId
result in who-knows-what getting passed

to the
 InterlockedCompareExchange function.

Okay, they managed to spell
 InterlockedCompareExchange correctly.

And then they forgot to retry the operation if the compare-exchange
failed,
which means that

they will just proceed with whatever value the
 g_dwUniqueId
variable held at the time of

the
 InterlockedCompareExchange call.
If it just got incremented by another thread, then

this thread
and the other thread will be using the same “unique” value.

https://devblogs.microsoft.com/oldnewthing/20110406-01/?p=11013
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/05/10149783.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/05/10149783.aspx#10150008
http://blogs.msdn.com/b/oldnewthing/archive/2004/09/15/229915.aspx

2/2

Joshua points out that
compiler optimization can prevent the capture from being a true

capture.
Though I would put the volatile keyword on
 g_dwUniqueId rather than scv ,

because the volatile object is the global variable, not the local.
Marking the local as volatile

forces all accesses to the local to be
executed as written, but the compiler can still optimize

the access
to g_dwUniqueId .
(It might, for example, propagate the value in from a previous

read
earlier in the function.)

And do take into consideration
Leo Davidson’s warning:
This series of articles is a peek

behind the scenes series,
not a here’s how you should do it series.
We’re taking apart a bunch

of toasters to see how they work.
When possible, take advantage of code written by people

smarter
than you.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/04/05/10149783.aspx#10150063
http://blogs.msdn.com/b/oldnewthing/archive/2011/04/05/10149783.aspx#10150047
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

