
1/2

March 23, 2011

Function requirements are cumulative: If you fail to meet
any of them, then all bets are off

devblogs.microsoft.com/oldnewthing/20110323-00

Raymond Chen

A customer was having problems with the WaitForMultipleObjects function:

We are looking for a clarification of the behavior of WaitForMultipleObjects . We have a
thread that waits on two handles (call them Handle1 and Handle2) with WaitFor‐
MultipleObjects , bWaitAll = FALSE . Under certain conditions, we signal Handle1
and close Handle2 from another thread while the wait is in progress. This results in
WAIT_FAILED being returned from the wait call. MSDN is not clear on what the expected

behavior is here. On the one hand, it says

A. When bWait is FALSE , this function checks the handles in the array in order starting
with index 0, until one of the objects is signaled. If multiple objects become signaled, the
function returns the index of the first handle in the array whose object was signaled.

This description implies that the wait should never fail, because the function should have
noticed that Handle1 is signaled before it got around to noticing that Handle2 was invalid.

On the other hand, the documentation also says

B. If one of these handle is closed while the wait is still pending, the function’s behavior is
undefined.

What behavior is guaranteed here?

Once you violate a constraint (in this case, the constraint that the handles remain valid for

the duration of the wait operation), you have failed to meet the prerequisites and the

behavior is undefined. You can’t say, “Well, sure you say I can’t do X, but if you follow exactly

the steps given in this description of how signaled objects are selected, then the function

wouldn’t even have noticed X before coming to a decision, so the fact that I broke one of the

rules is irrelevant!”
The description of the behavior of the WaitForMultipleObjects

function when bWait is FALSE is not an implementation specification. It’s a description of

how to interpret the behavior of the function. The algorithmic way the function behavior is

described is to assist in understanding the behavior; it doesn’t mean that the function

https://devblogs.microsoft.com/oldnewthing/20110323-00/?p=11153

2/2

actually follows the algorithm step-by-step. (In reality, there is no polling loop, as the

algorithmic description implies. All the handles are waited on simultaneously. It’s like

Lebesgue integration: You integrate over the entire domain at once.)
An algorithm-free

description of the behavior when bWait is false might go like this:

A. When bWait is FALSE , the function does not return until one of the handles in the

array becomes signaled. The return value is the smallest index corresponding to a

signaled handle.

This description is purely declarative but gives you no mental model.
It’s like saying that

“Water seeks its own level.” Water doesn’t have a will that compels it to behave in a certain

way, but describing the behavior in that way makes reasoning about water easier.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

