
1/2

March 17, 2011

What does the "l" in lstrcmp stand for?
devblogs.microsoft.com/oldnewthing/20110317-00

Raymond Chen

If you ask Michael Kaplan, he’d probably say that it stands for lame.
In his article, Michael

presents a nice chart of the various L-functions and their sort-of counterparts. There are

other L-functions not on his list, not because he missed them, but because they don’t have

anything to do with characters or encodings. On the other hand, those other functions help

shed light on the history of the L-functions. Those other functions are lopen, lcreat, lread,

lwrite, lclose, and llseek. There are all L-version sort-of counterparts to open, creat, and

read, write, close, and lseek. Note that we’ve already uncovered the answer to the unasked

question “Why does llseek have two L’s?” The first L is a prefix (whose meaning we will soon

discover) and the second L comes from the function it’s sort-of acting as the counterpart to.

But what does the L stand for? Once you find those other L-functions, you’ll see next door the

H-functions hread and hwrite. As we learned a while back, being lucky is simply observing

things you weren’t planning to observe. We weren’t expecting to find the H-functions, but

there they were, and they blow the lid off the story.
The H prefix in hread and hwrite stands

for huge. Those two functions operated on so-called huge pointers, which is 16-bit jargon for

pointers to memory blocks larger than 64KB. To increment your average 16:16 pointer by one

byte, you increment the bottom 16 bits. But when the bottom 16 bits contain the value

0xFFFF, the increment rolls over, and where do you put the carry? If the pointer is a huge

pointer, the convention is that the byte that comes after S:0xFFFF is

(S+__AHINCR):0x0000 , where __AHINCR is a special value exported by the Windows

kernel. If you allocate memory larger than 64KB, the GlobalAlloc function breaks your

allocation into 64KB chunks and arranges them so that incrementing the selector by

__AHINCR takes you from one chunk to the next.
Working backwards, then, the L prefix

therefore stands for long. These functions explicitly accept far pointers, which makes them

useful for 16-bit Windows programs since they are independent of the program’s memory

model. Unlike the L-functions, the standard library functions like strcpy and read

operate on pointers whose size match the data model. If you write your program in the so-

called medium memory model, then all data pointers default to near (i.e., they are 16-bit

offsets into the default data segment), and all the C runtime functions operate on near

pointers. This is a problem if you need to, say, read some data off the disk into a block of

memory you allocated with GlobalAlloc : That memory is expressible only as a far pointer,

but the read function accepts a near pointer.
To the rescue comes the lread function,

https://devblogs.microsoft.com/oldnewthing/20110317-00/?p=11193
http://blogs.msdn.com/michkap/
http://blogs.msdn.com/michkap/archive/2008/03/07/8086758.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/12/12/9199378.aspx

2/2

which you can use to read from the disk into your far pointer.
How did Windows decide

which C runtime functions should have corresponding L-functions? They were the functions

that Windows itself used internally, and which were exported as a courtesy.
Okay, now let’s

go back to the Lame part. Michael Kaplan notes that the lstrcmp and lstrcmpi functions

actually are sort-of counterparts to strcoll and strcolli . So why weren’t these

functions called lstrcoll and lstrcolli instead?

Because back when lstrcmp and lstrcmpi were being named, the strcoll and

strcolli functions hadn’t been invented yet! It’s like asking, “Why did the parents of

General Sir Michael Jackson give him the same name as the pop singer?” or “Why didn’t they

use the Space Shuttle to rescue the Apollo 13 astronauts?”

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2007/07/10/3799014.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/01/19/10117410.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

