
1/3

March 10, 2011

How do I create a topmost window that is never covered
by other topmost windows?

devblogs.microsoft.com/oldnewthing/20110310-00

Raymond Chen

We already know that you can’t create a window that is always on top, even in the presence of

other windows marked always-on-top. An application of the What if two programs did this?

rule demonstrates that it’s not possible, because whatever trick you use to be on-top-of-

always-on-top, another program can use the same trick, and now you have two on-top-of-

always-on-top windows, and what happens?
A customer who failed to understand this

principle asked for a way to establish their window as “super-awesome topmost”. They even

discovered the answer to the “and what happens?” rhetorical question posed above.

We have overridden the OnLostFocus and OnPaint methods to re-assert the TopLevel and
TopMost window properties, as well as calling BringToFront and Activate. The result is that our
application and other applications end up fighting back and forth because both applications are
applying similar logic. We tried installing a global hook and swallowing paint and focus events
for all applications aside from our own (thereby preventing the other applications from having
the opportunity to take TopMost ahead of us), but we found that this causes the other
applications to crash. We’re thinking of setting a timer and re-asserting TopMost when the timer
fires. Is there a better way?

This is like saying, “Sometimes I’m in a hurry, and I want to make sure I am the next person

to get served at the deli counter. To do this, I find whoever has the lowest number, knock

them unconscious, and steal their ticket. But sometimes somebody else comes in who’s also

in a hurry. That person knocks me unconscious and steals my ticket. My plan is to set my

watch alarm to wake me up periodically, and each time it wakes me up, I find the person with

the lowest number, knock them unconscious, and steal their ticket. Is there a better way?”

The better way is to stop knocking each other unconscious and stealing each other’s tickets.

The customer (via the customer liaison) provided context for their question.

https://devblogs.microsoft.com/oldnewthing/20110310-00/?p=11253
http://blogs.msdn.com/b/oldnewthing/archive/2005/06/07/426294.aspx


2/3

This is not a general-purpose application. This application will be run on dedicated machines
which operate giant monitors in retail stores. There are already other applications running on
the computer which rotate through advertisements and other display information.

The customer is writing another application which will also run on the machine. Most of the
time, the application does nothing, but every so often, their application needs to come to the
front and display its message, regardless of whatever the other applications are displaying. (For
example, there might be a limited-time in-store promotion that needs to appear on top of the
regular advertisements.)

Unfortunately, all of these different programs were written by different vendors, and there is no
coordination among them for who gets control of the screen. We were hoping that there was
some way we could mark our window as “super topmost” so that when it came into conflict
with another application running on the machine, it would win and the other application would
lose.

I’m thinking of recommending that the vendors all come up with some way of coordinating
access to the screen so they can negotiate among themselves and not get into focus fights.
(Easier said than done, since all the different applications running on the machine come from
different vendors…)

Since there is no coordination among the various applications, you’re basically stuck playing

a game of walls and ladders, hoping that your ladder is taller than everybody else’s wall. The

customer has pretty much found the tallest ladder which the window manager provides.

There is no “super topmost” flag.
Sure, you can try moving to another level of the system, like

say creating a custom desktop, but all that does is give you a taller ladder. And then one of

the other applications is going to say, “I need to display a store-wide page (manager to the

deli please, manager to the deli), overriding all other messages, even if it’s a limited-time in-

store promotion.” And they’ll try something nastier, like enumerating all the windows in the

system and calling ShowWindow(SW_HIDE) .
And then another application will say, “I need

to display an important store-wide security announcement (Will the owner of a white Honda

Civic, license plate 037-MSN, please return to your vehicle), overriding all other messages,

even if it’s a store-wide page.” And it’ll try something nastier, like setting their program as the

screen saver, disabling the mouse and keyboard devices, and then invoking the screen saver

on the secure desktop.
And then another application will say, “I need to display a critical

store-wide announcement (Fire in the automotive department. Everybody evacuate the

building immediately), overriding all other messages, even if it’s an important store-wide

security announcement.” And it’ll try something nastier, like enumerating all the processes

on the system, attaching to each one with debug privilege, and suspending all the threads.

Stop the madness. The only sane way out is to have the programs coöperate to determine

who is in control of the screen at any particular time.

http://wendyhome.com/2011/01/18/royal-mail-deliver/


3/3

In response to my hypothetical game of walls and ladders, one of my colleagues wrote, “Note

to self: Do not get into a walls-and-ladders contest with Raymond.”

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

