
1/5

March 9, 2011

How to rescue a broken stack trace: Recovering the EBP
chain

devblogs.microsoft.com/oldnewthing/20110309-00

Raymond Chen

When debugging, you may find that the stack trace falls apart:

ChildEBP RetAddr

001af118 773806a0 ntdll!KiFastSystemCallRet

001af11c 7735b18c ntdll!ZwWaitForSingleObject+0xc

001af180 7735b071 ntdll!RtlpWaitOnCriticalSection+0x154

001af1a8 2f6db1a9 ntdll!RtlEnterCriticalSection+0x152

001af1b4 2fe8d533 ABC!CCriticalSection::Lock+0x12

001af1d0 2fe8d56a ABC!CMessageList::Lock+0x24

001af234 2f6e47ac ABC!CMessageWindow::UpdateMessageList+0x231

001af274 2f6f040e ABC!CMessageWindow::UpdateContents+0x84

001af28c 2f6e4474 ABC!CMessageWindow::Refresh+0x1a8

001af360 2f6e4359 ABC!CMessageWindow::OnChar+0x4c

001af384 761a1a10 ABC!CMessageWindow::WndProc+0xb31

00000000 00000000 USER32!GetMessageW+0x6e

This can’t possibly be the complete stack. I mean, where’s the thread procedure? That should

be at the start of the stack for any thread.

What happened is that the EBP chain got broken, and the debugger can’t walk the stack any

further. If the code was compiled with frame pointer optimization (FPO), then the compiler

will not create EBP frames, permitting it to use EBP as a general purpose register instead.

This is great for optimization, but it causes trouble for the debugger when it tries to take a

stack trace through code compiled with FPO for which it does not have the necessary

information to decode these types of stacks.

Begin digression: Traditionally, every function began with the sequence

 push ebp ;; save caller's EBP

 mov ebp, esp ;; set our EBP to point to this "frame"

 sub esp, n ;; reserve space for local variables

and ended with

https://devblogs.microsoft.com/oldnewthing/20110309-00/?p=11263

2/5

 mov esp, ebp ;; discard local variables

 pop ebp ;; recover caller's EBP

 ret n

This pattern is so common that the x86 has dedicated instructions for it. The ENTER n,0

instruction does the push / mov / sub , and the LEAVE instruction does the mov /

pop . (In C/C++, the value after the comma is always zero.)

if you look at what this does to the stack, you see that this establishes a linked list of what are

called EBP frames. Suppose you have the following code fragment:

void Top(int a, int b)

{

int toplocal = b + 5;

Middle(a, local);

}

void Middle(int c, int d)

{

Bottom(c+d);

}

void Bottom(int e)

{

int bottomlocal1, bottomlocal2;

...

}

When execution reaches the ... inside function Bottom the stack looks like the following.

(I put higher addresses at the top; the stack grows downward. I also assume that the calling

convention is __stdcall and that the code is compiled with absolutely no optimization.)

Top ‘s stack
frame

 0040F8F8 parameter b passed to
Top

During execution of
Top ,

← EBP = 0040F8EC
0040F8F4 parameter a passed to

Top

0040F8F0 return address of Top ‘s
caller

0040F8EC EBP of Top ‘s caller

0040F8E8 toplocal

Middle ‘s stack
frame

 0040F8E4 parameter d passed to
Middle

During execution of
Middle ,

← EBP = 0040F8D8
0040F8E0 parameter c passed to

Middle

3/5

0040F8DC return address of Middle ‘s
caller

0040F8D8 0040F8EC = EBP of
Middle ‘s caller

Bottom ‘s stack
frame

 0040F8D4 parameter e passed to
Bottom

During execution of
Bottom ,

← EBP = 0040F8CC
0040F8D0 return address of Bottom ‘s

caller

0040F8CC 0040F8D8 = EBP of
Bottom ‘s caller

0040F8C8 bottomlocal1

0040F8C4 bottomlocal2

Each stack frame is identified by the EBP value which the function uses during its execution.

The structure of each stack frame is therefore

[ebp+n] Offsets greater than 4 access parameters

[ebp+4] Offset 4 is the return address

[ebp+0] Zero offset accesses caller’s EBP

[ebp-n] Negative offsets access locals

And the stack frames are all connected to each other in the form of a linked list threaded

through the EBP values. This linked list is known as the EBP chain. End digression.

To recover from the broken EBP chain, start dumping the stack a little before things go bad

(in this case, I would start at 001af384-80) and then look for something that looks like a

valid stack frame. Since the parameters and locals to a function can be pretty much anything,

all you have left to work with is the EBP and the return address. In other words, you are

looking for pairs of values of the form

«pointer a little higher up the stack».

«code address»

In this case, I got lucky and didn’t have to go very far:

4/5

 001af474 00000000

-001af478 001af494

/ 001af47c 14f4fba8 DEF!SubclassBase::CallOriginalWndProc+0x1a

| 001af480 2f6e4317 ABC!CMessageWindow::WndProc

| 001af484 00970338

| 001af488 0000000f

| 001af48c 00000000

\ 001af490 00000000

>001af494 001af4f0

 001af498 14f4fcd6 DEF!SubclassBase::ForwardMessage+0x23

 001af49c 00970338

 001af4a0 0000000f

 001af4a4 00000000

 001af4a8 00000000

 001af4ac 00000000

 001af4b0 2f6e4317 ABC!CMessageWindow::WndProc

 001af4b4 ed758311

 001af4b8 00000000

 001af4bc 15143f70

 001af4c0 00000000

 001af4c4 14f4fb8e DEF!CView::SortItems+0x96

 001af4c8 00000000

 001af4cc 2f6e4317 ABC!CMessageWindow::WndProc

 001af4d0 00000000

At stack address 001af478 , we have a pointer to memory higher up the stack followed by a

code address. if you follow that pointer, it points to another instance of the same pattern: A

pointer higher up the stack followed by the code address.

Once you find where the EBP chain resumes, you can ask the debugger to resume its stack

trace from that point with the =n option to the k command.

5/5

0:000> k=001af478

ChildEBP RetAddr

001af478 14f4fba8 ntdll!KiFastSystemCallRet

001af494 14f4fcd6 DEF!SubclassBase::CallOriginalWndProc+0x1a

001af4f0 14f4fc8b DEF!SubclassBase::ForwardMessage+0x23

001af514 14f32dd1 DEF!SubclassBase::ForwardChar+0x59

001af530 14f4fcd6 DEF!SubclassBase::OnChar+0x3c

001af58c 14f4fd76 DEF!HelpSubclass::WndProc+0x51

001af5e4 761a1a10 DEF!SubclassBase::s_WndProc+0x1b

001af610 761a1ae8 USER32!GetMessageW+0x6e

001af688 761a1c03 USER32!GetMessageW+0x146

001af6e4 761a3656 USER32!GetMessageW+0x261

001af70c 77380e6e USER32!OffsetRect+0x4d

001af784 761a2a98 ntdll!KiUserCallbackDispatcher+0x2e

001af794 698fd0aa USER32!DispatchMessageW+0xf

001af7a4 2f7bf15c ABC!CThread::DispatchMessageW+0x23

001af7e0 2f7befc9 ABC!CMessageWindow::MessageLoop+0x3a2

001af808 2ff56d20 ABC!CMessageWindow::ThreadProc+0x9f

001af898 75c2384b ABC!CMessageWindow::s_ThreadProc+0x10

001af8a4 7735a9bd kernel32!BaseThreadInitThunk+0x12

001af8e4 00000000 ntdll!LdrInitializeThunk+0x4d

When you do this, make sure to ignore the first line of the resumed stack trace, since that is

based on your current EIP , not the return address stored in the stack frame.

Today was really just a warm-up for another debugging technique that I haven’t finished

writing up yet, so you’re just going to be in suspense for another two years or so, though if

you attended my TechEd China talk, you already know where I’m going.

Bonus reading: In Ryan Mangipano’s two-part series on kernel mode stack overflows, the

second part does a bit of EBP chain chasing. (Feel free to read the first part, as well as earlier

discussion on the subject of stack overflows.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20101201-01/?p=12143
https://docs.microsoft.com/en-us/archive/blogs/ntdebugging/part-2-got-stack-no-we-ran-out-and-kv-wont-tell-me-why
https://docs.microsoft.com/en-us/archive/blogs/ntdebugging/part-1-got-stack-no-we-ran-out-of-kernel-mode-stack-and-kv-wont-tell-me-why
https://docs.microsoft.com/en-us/archive/blogs/ntdebugging/kernel-stack-overflows
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

