
1/2

March 3, 2011

If you're waiting for I/O to complete, it helps if you
actually have an I/O to begin with

devblogs.microsoft.com/oldnewthing/20110303-00

Raymond Chen

We saw earlier
the importance of waiting for I/O to complete before
freeing the data

structures associated with that I/O.
On the other hand, before you start waiting, you have to

make
sure that you have something to wait for.

A customer reported a hang in GetOverlappedResult
waiting for an I/O to cancel, and the

I/O team was brought in to investigate.
They looked at the I/O stack and found that the I/O

the customer
was waiting for was no longer active.
The I/O people considered a few

possibilities.

The I/O was active at one point, but when it completed,
a driver bug prevented the

completion event from being signaled.

The I/O was active at one point, and the I/O completed,
but the program inadvertently

called ResetEvent
on the handle, negating the SetEvent performed
by the I/O

subsystem.

The I/O was never active in the first place.

These possibilities are in increasing order of likelihood
(and, perhaps not coincidentally,

decreasing order of relevance to the I/O team).

A closer investigation of the customer’s code showed a code path
in which the ReadFile

call was bypassed.
When the bypass code path rejoined the mainline code path,
the code

continued its work for a while, and then if it decided
that it was tired of waiting for the read

to complete, it
performed a CancelIo followed by a
 GetOverlappedResult to
wait for the

cancellation to complete.

If you never issue the I/O, then a wait for the I/O to complete
will wait forever,
since you’re

waiting for something that will never happen.

Okay, so maybe this was a dope-slap type of bug.
But here’s something perhaps a little less

self-evident:

https://devblogs.microsoft.com/oldnewthing/20110303-00/?p=11313
http://blogs.msdn.com/b/oldnewthing/archive/2011/02/03/10124060.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/02/02/10123392.aspx

2/2

// there is a flaw in this code - see discussion

// assume operating on a FILE_FLAG_OVERLAPPED file

if (ReadFile(h, ..., &overlapped)) {

// I/O completed synchronously, as we learned earlier

} else {

// I/O under way

... do stuff ...

// okay, let's wait for that I/O

GetOverlappedResult(h, &overlapped, &dwRead, TRUE);

...

}

The GetOverlappedResult call can hang here
because the comment “I/O is under way” is

overly optimistic:
The I/O may never even have gotten started.
If it never started, then it will

never complete either.
You cannot assume that a FALSE return from
 ReadFile implies

that the I/O is under way.
You also have to check that GetLastError()
returns

ERROR_IO_PENDING .
Otherwise, the I/O failed to start, and you shouldn’t wait for it.

// assume operating on a FILE_FLAG_OVERLAPPED file

if (ReadFile(h, ..., &overlapped)) {

// I/O completed synchronously, as we learned earlier

} else if (GetLastError() == ERROR_IO_PENDING) {

// I/O under way

... do stuff ...

// okay, let's wait for that I/O

GetOverlappedResult(h, &overlapped, &dwRead, TRUE);

...

} else {

// I/O failed - don't wait because there's nothing to wait for!

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

