
1/2

February 25, 2011

Why does WaitForMultipleObjects return
ERROR_INVALID_PARAMETER when all the parameters
look valid to me?

devblogs.microsoft.com/oldnewthing/20110225-00

Raymond Chen

A customer asked for assistance with the
 WaitForMultipleObjects function:

I am getting
 ERROR_INVALID_PARAMETER
when calling
 WaitForMultipleObjects
even though
all the parameters are valid as far as I can tell.
I’ve narrowed it down to this simple
program.

int main()

{

int i;

HANDLE Handles[4];

// Create the events

for (i = 0; i < 4; i++) {

 Handles[i] = CreateEvent(NULL, FALSE, FALSE, TEXT("Test"));

 if (Handles[i] == NULL) {

 printf("Failed to create event - test failed\n"); return 0;

 }

}
// Set them all to signaled

for (i = 0; i < 4; i++) SetEvent(Handles[i]);

// Wait for all of them - we expect this to return WAIT_OBJECT_0

printf("WaitForMultipleObjects returned %d\n",

 WaitForMultipleObjects(4, Handles, TRUE, INFINITE));

return 0;

}

First of all,
thank you for narrowing the issue down to
a minimal program that illustrates the

problem.
You’d be surprised how often a customer says,
“I’m having problem with

function X.
Here’s a program that illustrates the problem.”
And then attaches a huge project

that doesn’t
compile because it is written in some
development environment different from

the one you have
on your machine.

https://devblogs.microsoft.com/oldnewthing/20110225-00/?p=11383

2/2

The problem here is that you are passing four handles to the same
event to WaitFor‐

MultipleObjects with the
 bWaitAll parameter set to TRUE .
The WaitForMultiple‐

Objects function rejects
duplicates if you ask it to wait for all of the objects.
Why is that?

Well, consider this program:
It creates a named auto-reset
event (as is “obvious” from
the

FALSE second
parameter passed to CreateEvent)
and stores a handle to it in Handles[0] .

The second through fourth calls to CreateEvent merely create
new handles to the same

auto-reset event because the name matches
an existing event.
The second loop sets that same

event four times.
And then the WaitForMultipleObjects asks to wait
for all of the handles

to be signaled.
But since all four handles refer to the same object,
it’s being asked to wait

until the event has reached the state
where the wait can complete four times simultaneously.

(Huh?)

Recall that WaitForMultipleObjects does not
alter the state of any of the waited objects

until the wait completes.
If you ask it to wait for both an event and a semaphore,
and the

event is signaled but the semaphore is not,
then the function will leave the event signaled

while it waits
for the semaphore.
Only when all the items being waited for are signaled will

the
 WaitForMultipleObjects function perform whatever
actions are appropriate for

acquiring a signaled object and return.

Okay, so we asked it to wait on the same auto-reset event four times.
But that’s nonsense:
An

auto-reset event is just a stupid semaphore
which can have at most one token.
But in order

for the wait to succeed, it needs four tokens.
That’s never going to happen, so the wait is

nonsensical.

More generally speaking,
 WaitForMultipleObjects returns
 ERROR_INVALID_PARAMETER

if you pass
 bWaitAll = TRUE
and there are any duplicates in the handle array
(either

identical handles, or different handles to the same
underlying object).
It doesn’t try to puzzle

out the objects and say,
“Well, let me see if this is a reasonable combination of
objects to wait

on more than once”;
it just sees the duplicate and says
“Forget this!”

Going back to the customer’s original problem:
We asked why they were creating four

handles to the same
object, and what they expected when waiting for an auto-reset
event to

have four available tokens (which it never will),
and the customer admitted that it was just an

error in their code.
The original version of the code used a named event and waited
on it with

WaitForSingleObject ,
and when they modified the code to make it support
multiple

events, they forgot to give each event a different name.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2006/08/28/728349.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/06/22/642849.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

