
1/2

February 21, 2011

If an operation results in messages being sent, then
naturally the target window must be processing
messages for the operation to complete

devblogs.microsoft.com/oldnewthing/20110221-00

Raymond Chen

If an operation includes as part of its processing sending messages, then naturally the target

window for those messages must be processing messages (or more precisely, the thread

which owns the target window must be processing messages) in order for the operation to

complete. Why? Because processing messages is the only way a window can receive

messages!
It’s sort of tautological yet not obvious to everyone.
Generally you run into this

problem when you try to manipulate a window from a thread different from the one which

created the window. Since windows have thread affinity, operations from off-thread typically

need to get moved onto the thread which owns the window because that’s where the window

really “lives”.
The window manager will often try to see how much it can do without

marshalling to the thread which owns the window, but when message traffic is involved, you

are pretty much stuck. Messages are delivered to a window on the thread to which the

window belongs, and there’s no way around that.
There are subtle ways in which a function

called off-thread can result in message traffic. Generally speaking, you should just assume

that any operation on a window may generate messages: Even if they don’t do so today, they

may do so in the future. For example, changing a window’s style did not generate message

traffic in early versions of Windows, but in Windows 95, it began generating

WM_STYLECHANGING and WM_STYLECHANGED messages. This isn’t called out explicitly in the

documentation for SetWindowLong but it’s implied by the documentation for

WM_STYLECHANGING and WM_STYLECHANGED .
Why isn’t there an explicit callout in the

documentation for SetWindowLong ? At the time the SetWindowLong documentation was

originally written, the WM_STYLECHANGING and WM_STYLECHANGED messages did not exist.

Therefore the documentation was complete at the time of writing. Circumstances changed

elsewhere in the system that had secondary effects on SetWindowLong , but nobody

bothered to update the documentation, probably because it didn’t even occur to anybody that

these effects existed. And then these secondary effects lead to tertiary effects:

SetScrollInfo may change the window style to add or remove the WS_HSCROLL or

WS_VSCROLL style, which in turn results in a call to SetWindowLong which in turn results

in sending the WM_STYLECHANGING and WM_STYLECHANGED messages. Next come

https://devblogs.microsoft.com/oldnewthing/20110221-00/?p=11443
http://blogs.msdn.com/oldnewthing/archive/2007/12/28/6882760.aspx#6937173

2/2

quaternary effects on functions like FlatSB_SetScrollInfo , since they call

SetScrollInfo as part of their functioning. And so on, and so on. Just tracking down the

full ripple effect of those two new messages is probably impossible.

But the root cause of all these ripple effects is operating on a window (particularly modifying

a window) from a thread different from the thread that owns the window. Avoid that, and

you’ll avoid the whole issue of which operations generate messages and which manage to

sneak by without needing to send any messages (at least not yet).

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

