
1/4

February 18, 2011

WM_NCHITTEST is for hit-testing, and hit-testing can
happen for reasons other than the mouse being over
your window

devblogs.microsoft.com/oldnewthing/20110218-00

Raymond Chen

The WM_NCHITTEST message is sent to your window
in order determine what part of the

window corresponds to a
particular point.
The most common reason for this is that
the

mouse is over your window.

The default WM_SETCURSOR handler
uses the result of WM_NCHITTEST
to figure out

what type of cursor to show.
for example, if you return HTLEFT ,
then DefWindow‐

Proc
will show the IDC_SIZEWE cursor.

If the user clicks the mouse,
the default WM_NCLBUTTONDOWN handler
uses the result of

WM_NCHITTEST to figure out
where on the window you clicked.
For example, if you

return HTCLOSE , then it will
act as if the user clicked on the Close button.

Although WM_NCHITTEST triggers most often
for mouse activity, that is not the only reason

why
somebody might want to ask,
“What part of the window does this point correspond to?”

The WindowFromPoint function uses
 WM_NCHITTEST in its quest to figure
out which

window is under the point you passed in.
If you return HTTRANSPARENT ,
then it will

skip your window and keep looking.

Drag/drop operations use the result of
 WM_NCHITTEST to figure out what part of the

window you are dragging over.

Accessibility tools use the result of
 WM_NCHITTEST to help the user understand
what’s

on the screen.

Anybody can use the result of
 WM_NCHITTEST to see how your window is laid out.
We

used it a few years ago
to detect a right-click on the caption button.

Consider a program that wants to beep
when the mouse is over the Close button.
This is an

artificial example, but you can use your imagination
to come up with more realistic ones,
like

showing a custom mouseover animation or
displaying a balloon tip if the document is

unsaved.
I chose beeping because it requires less code;
otherwise, all the details of its

implementation would distract
from the point of the example.

https://devblogs.microsoft.com/oldnewthing/20110218-00/?p=11453
http://blogs.msdn.com/oldnewthing/archive/2003/10/27/55461.aspx

2/4

Start with
the scratch program
and make the following changes:

BOOL g_fInCloseButton = FALSE;

void EnterCloseButton(HWND hwnd)

{

if (g_fInCloseButton) return;

g_fInCloseButton = TRUE;

MessageBeep(-1); // obviously something more interesting goes here

TRACKMOUSEEVENT tme = { sizeof(tme), TME_NONCLIENT | TME_LEAVE, hwnd };

TrackMouseEvent(&tme);

}

void LeaveCloseButton(HWND hwnd)

{

if (g_fInCloseButton) {

 // stop animation, remove balloon, etc.

 g_fInCloseButton = FALSE;

}
}

// This code is wrong - see text

UINT OnNcHitTest(HWND hwnd, int x, int y)

{

UINT ht = FORWARD_WM_NCHITTEST(hwnd, x, y, DefWindowProc);

if (ht == HTCLOSE) {

 EnterCloseButton(hwnd);

} else {

 LeaveCloseButton(hwnd);

}
return ht;

}

HANDLE_MSG(hwnd, WM_NCHITTEST, OnNcHitTest);

case WM_NCMOUSELEAVE:

LeaveCloseButton(hwnd);

break;

We keep track of whether or not the mouse is in the close button
so that we don’t double-

start the animation or double-cancel it.
(For us, this keeps us from beeping
when the mouse

moves around within the Close button.)
When the mouse leaves the close button—either

because it
moved to another part of the window or because it left the
window
entirely—we

reset the flag.

When you run this program, it pretty much behaves as intended.
But that’s because we

haven’t tried anything interesting yet.

Merge in the changes from our
sample drag/drop program,
so now you have a program that

both performs drag/drop and which
has special Close button behavior.

Now things get interesting.
Run the program and drag out of the client area (triggering
the

drag/drop behavior) and hover the mouse over the Close button.

Ow, my ears!

http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/12/06/275659.aspx

3/4

What happened here?

When the drag/drop loop is in progress, the mouse is captured
to the drag/drop window.

Mouse capture means that all mouse messages go to that window
(for as long as a mouse

button is held down).
“I don’t care what window you think the mouse is over; it’s over me!”

Another way of looking at this is that the capture window
logically covers the entire screen

(for the purpose of determining who gets the mouse message).

The drag/drop loop wants to know which window is under the drag cursor
so it can figure out

whose IDropTarget should receive
the drag/drop notifications.
This WindowFromPoint call

triggers a
 WM_NCHITTEST
message, which our program incorrectly interprets as a
“the

mouse is now in my window”.
(Since the mouse is captured,
the mouse really isn’t in your

window;
it’s in the window that has capture because that window is stealing
all the mouse

input.)
It then performs its “The mouse is in the Close button”
activities (BEEP).
But since

the mouse was never in the window to begin with,
the TrackMouseEvent call that requests

“let me know when the mouse leaves my window”
posts a WM_NCMOUSELEAVE message

immediately.
The window then cleans up its “mouse is in the Close button”
behaviors, ready

for the next cycle.

And the next cycle begins pretty much as soon as the previous
cycle finished,
because the

mouse
is still physically (but not logically) in the Close button.

Result: Infinite beep loop.

(The real-life situation that triggered this article was much more
complicated than this,

involving an animation rather than a beep,
but the result was effectively the same:
Under the

right circumstances, just moving the mouse over the caption
resulted in the animation

becoming an epileptic-seizure-inducing
flicker as the animation continuously started and

stopped.)

As we saw some time ago,
the WM_MOUSEMOVE message is the way to detect
that the mouse has

entered your window.
(Though
some people haven’t figured this out and
continue on their

fruitless quest for the WM_MOUSEENTER message.)

In our case, the applicable message is
 WM_NCMOUSEMOVE
rather than WM_MOUSEMOVE ,
since

we are operating on the nonclient area.
Therefore, the fix is to move the code that starts the

animation from
 WM_NCHITTEST
to WM_NCMOUSEMOVE .

http://blogs.msdn.com/oldnewthing/archive/2003/10/13/55279.aspx
http://bytes.com/topic/visual-basic-net/answers/385246-code-wm_mouseenter

4/4

// Delete the old OnNcHitTest function and replace it with this

void OnNcMouseMove(HWND hwnd, int x, int y, UINT codeHitTest)

{

FORWARD_WM_NCMOUSEMOVE(hwnd, x, y, codeHitTest, DefWindowProc);

if (codeHitTest == HTCLOSE) {

 EnterCloseButton(hwnd);

} else {

 LeaveCloseButton(hwnd);

}
return ht;

}

// delete HANDLE_MSG(hwnd, WM_NCHITTEST, OnNcHitTest);

HANDLE_MSG(hwnd, WM_NCMOUSEMOVE, OnNcMouseMove);

Remember, if you want to do something when the mouse
enters your window,
wait until the

mouse actually enters your window.
The WM_NCHITTEST message doesn’t mean that
the

mouse is in your window;
it just means that somebody is asking,
“If the mouse were in your

window,
what would it be doing?”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

