
1/2

February 17, 2011

What is the highest numerical resource ID permitted by
Win32?

devblogs.microsoft.com/oldnewthing/20110217-00

Raymond Chen

A customer asked the following question:

What is the maximum legal value of a resource identifier? Functions like LoadString take a
UINT as the resource ID, which suggests a full 32-bit range, but in practice, most resource IDs

appear to be in the 16-bit range. Is there any particular history/precedent for avoiding large
numbers as resource IDs? (I have a program that autogenerates string IDs, and having a full 32-
bit range gives me some more flexibility in assigning the IDs, but I want to make sure I don’t
run afoul of any limitations either.)

Let’s answer the literal question first, and then look at the misconceptions behind the

question.

The maximum legal value for an integer resource identifier is 65535. You don’t need any

special psychic powers for this; it’s right there in the MAKEINTRESOURCE macro:

#define MAKEINTRESOURCEA(i) ((LPSTR)((ULONG_PTR)((WORD)(i))))

#define MAKEINTRESOURCEW(i) ((LPWSTR)((ULONG_PTR)((WORD)(i))))

#ifdef UNICODE

#define MAKEINTRESOURCE MAKEINTRESOURCEW

#else

#define MAKEINTRESOURCE MAKEINTRESOURCEA

#endif // !UNICODE

The MAKEINTRESOURCE macro takes the integer you passed, casts it down to a 16-bit WORD ,

and then casts the result up to a LPTSTR , effectively generating a pointer whose top bits are

all zero (a pointer into the first 64KB of the address space).

Right off the bat, you can see that integer resources are limited to 16-bit values, because if

you pass anything bigger, it’ll get truncated by the cast to WORD .

Why does this limitation exist? Because most resource loading functions overload a single

lpName parameter (representing the resource identifier or name) as both an integer

(identifier) and a string (name). You can’t have the full range of integers and the full range of

https://devblogs.microsoft.com/oldnewthing/20110217-00/?p=11463

2/2

pointers simultaneously if you want to be able to distinguish the two cases, so you have to

choose some rule by which you can tell them apart, and the rule chosen by Win32 is that if

the value is in the range 0..0xFFFF , then the value is treated as an integer; otherwise it is

treated as a pointer to a string.

This convention comes from the days of 16-bit Windows, where 32-bit pointers consisted of a

16-bit selector in the high order word and a 16-bit offset in the low order word. The selector

0x0000 is permanently invalid, so that’s a natural place to “sneak in” the integers: A

“pointer” whose selector is 0x0000 is really an integer smuggled inside a pointers. There

was no loss of expressiveness because integers in 16-bit Windows were, well, only 16-bits

wide, so the two parameter spaces (strings and integer) neatly meshed with no overlap. (This

partitioning of the address space also happily lines up with the convention that in Win32, the

first 64KB of address space is permanently invalid.)

Okay, so that answers the literal question, but there’s more going on. Fortunately, the

customer provided context: The integer range he’s interested in is string identifiers, not

resource identifiers.

String identifiers are not resource identifiers. As we saw earlier, strings are gathered in

bundles of 16. The bottom 4 bits of the string identifier specify which string in the bundle

contains the string in question, while the remaining bits form the resource identifier of the

bundle. We just learned that the resource identifier is a 16-bit value, so string identifiers can

go up to 65536 × 16 − 1.

The customer was pleased with this explanation, contributing the additional insight that “a

corollary to string bundling is that it’s more efficient to use contiguous ranges of string

identifiers (at least gathering them in blocks of 16) rather than sparsely generated ones.”

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2004/01/30/65013.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

