
1/4

February 2, 2011

Ready… cancel… wait for it! (part 1)
devblogs.microsoft.com/oldnewthing/20110202-00

Raymond Chen

One of the cardinal rules of the OVERLAPPED
structure is the OVERLAPPED structure
must

remain valid until the I/O completes.
The reason is that the OVERLAPPED structure
is

manipulated by address rather than by value.

The word complete here has a specific technical meaning.
It doesn’t mean “must remain valid

until you are no longer interested
in the result of the I/O.”
It means that the structure must

remain valid until
the I/O subsystem has signaled that the I/O operation
is finally over, that

there is nothing left to do,
it has passed on:
You have an ex-I/O operation.

Note that
an I/O operation can complete successfully, or it can
complete unsuccessfully.

Completion is not the same as success.

A common mistake when performing overlapped I/O
is issuing a cancel and immediately

freeing the OVERLAPPED
structure.
For example:

// this code is wrong

HANDLE h = ...; // handle to file opened as FILE_FLAG_OVERLAPPED

OVERLAPPED o;

BYTE buffer[1024];

InitializeOverlapped(&o); // creates the event etc

if (ReadFile(h, buffer, sizeof(buffer), NULL, &o) ||

 GetLastError() == ERROR_IO_PENDING) {

 if (WaitForSingleObject(o.hEvent, 1000) != WAIT_OBJECT_0) {

 // took longer than 1 second - cancel it and give up

 CancelIo(h);

 return WAIT_TIMEOUT;

 }

 ... use the results ...

}
...

The bug here is that after calling CancelIo ,
the function returns without waiting for the

ReadFile
to complete.
Returning from the function
implicitly frees the automatic variable

o .
When the ReadFile finally completes, the I/O system
is now writing to stack memory

that has been freed and is probably
being reused by another function.
The result is

https://devblogs.microsoft.com/oldnewthing/20110202-00/?p=11613
http://blogs.msdn.com/b/oldnewthing/archive/2010/12/17/10106259.aspx

2/4

impossible to debug:
First of all, it’s a race condition between your code and the I/O

subsystem, and breaking into the debugger doesn’t stop the
I/O subsystem.
If you step

through the code, you don’t see the corruption,
because the I/O completes while you’re

broken into the debugger.

Here’s what happens when the program is run outside the debugger:

ReadFile → I/O begins

WaitForSingleObject I/O still in progress

WaitForSingleObject
times out

CancelIo → I/O cancellation submitted to device driver

return

Device driver was busy reading from the hard drive

Device driver receives the cancellation

Device driver abandons the rest of the read operation

Device driver reports that I/O has been canceled

I/O subsystem writes STATUS_CANCELED
to
OVERLAPPED structure

I/O subsystem queues the completion function (if
applicable)

I/O subsystem signals the completion event (if applicable)

I/O operation is now complete

When the I/O subsystem receives word from the device driver
that the cancellation has

completed,
it performs the usual operations when an I/O operation completes:
It updates the

OVERLAPPED structure with the results
of the I/O operation, and notifies whoever wanted to

be notified
that the I/O is finished.

Notice that when it updates the OVERLAPPED structure,
it’s updating memory that has

already been freed back to the stack,
which means that it’s corrupting the stack of whatever

function
happens to be running right now.
(It’s even worse if you happened to catch it while

it was in the
process of updating the buffer !)
Since the precise timing of I/O is

unpredictable,
the program crashes with memory corruption that keeps changing
each time

it happens.

If you try to debug the program, you get this:

ReadFile → I/O begins

WaitForSingleObject I/O still in progress

3/4

WaitForSingleObject times out

Breakpoint hit on CancelIo
statement

Stops in debugger

Hit F10 to step over the CancelIo
call

→ I/O cancellation submitted to device driver

Breakpoint hit on return
statement

Stops in debugger

Device driver was busy reading from the hard
drive

Device driver receives the cancellation

Device driver abandons the rest of the read

operation

Device driver reports that I/O has been

canceled

I/O subsystem writes STATUS_CANCELED
to

OVERLAPPED structure

I/O subsystem queues the completion function

(if applicable)

I/O subsystem signals the completion event (if

applicable)

I/O operation is now complete

Look at the OVERLAPPED structure
in the debugger

It says STATUS_CANCELED

Hit F5 to resume execution

No memory corruption

Breaking into the debugger changed the timing of the I/O operation
relative to program

execution.
Now, the I/O completes before the function returns,
and consequently there is no

memory corruption.
You look at the OVERLAPPED structure and say,
“See? Immediately on

return from the CancelIo function,
the OVERLAPPED structure has been updated with the

result,
and the buffer contents are not being written to.
It’s safe to free them both now.

Therefore, this can’t be the source of my memory corruption bug.”

Except, of course, that it is.

This is even more crazily insidious because the OVERLAPPED
structure and the buffer are

updated by the I/O subsystem, which means that it happens
from kernel mode.
This means

that
write breakpoints set by your debugger won’t fire.
Even if you manage to narrow down

the corruption to
“it happens somewhere in this function”,
your breakpoints will never see it

http://blogs.msdn.com/oldnewthing/archive/2008/05/09/8475735.aspx

4/4

as it happens.
You’re going to see that the value was good,
then a little while later, the value

was bad,
and yet your write breakpoint never fired.
You’re then going to declare that the

world has gone mad
and seriously consider a different line of work.

To fix this race condition,
you have to delay freeing the OVERLAPPED structure
and the

associated buffer
until the I/O is complete and anything else that’s using them
has also

given up their claim to it.

 // took longer than 1 second - cancel it and give up

 CancelIo(h);

 WaitForSingleObject(o.hEvent, INFINITE); // added

 // Alternatively: GetOverlappedResult(h, &o, TRUE);

 return WAIT_TIMEOUT;

The WaitForSingleObject after the
 CancelIo
waits for the I/O to complete
before

finally returning (and implicitly freeing the OVERLAPPED
structure and the buffer on the

stack).
Better would be to use
 GetOverlappedResult
with bWait = TRUE ,
because that

also handles the case where the hEvent
member of the OVERLAPPED structure is NULL .

Exercise:
If you retrieve the completion status
after canceling the I/O
(either by looking at

the OVERLAPPED structure
directly or by using GetOverlappedResult)
there’s a chance

that the overlapped result
will be something other than STATUS_CANCELED
(or

ERROR_CANCELLED if you prefer Win32 error codes).
Explain.

Exercise:
If this example had used ReadFileEx ,
the proposed fix would be incomplete.

Explain and provide a fix.
Answer to come next time, and then we’ll look at another
version

of this same principle.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

