
1/3

January 20, 2011

How to turn off the exception handler that COM
"helpfully" wraps around your server

devblogs.microsoft.com/oldnewthing/20110120-00

Raymond Chen

Historically, COM
placed a giant try/except around your server’s methods.
If your server

encountered what would normally be an unhandled exception,
the giant try/except would

catch it and turn it into the
error RPC_E_SERVERFAULT .
It then marked the exception as

handled, so that the server
remained running,
thereby “improving robustness by keeping the

server running
even when it encountered a problem.”

Mind you, this was actually a disservice.

The fact that an unhandled exception occurred means that the server
was in an unexpected

state.
By catching the exception and saying,
“Don’t worry, it’s all good,”
you end up leaving a

corrupted server running.
For example:

HRESULT CServer::DoOneWork(...)

{

CWork *pwork = m_listWorkPending.RemoveFirst();

if (pwork) {

 pwork->UpdateTimeStamp();

 pwork->FrobTheWidget();

 pwork->ReversePolarity();

 pwork->UnfrobTheWidget();

 m_listWorkDone.Add(pwork);

}
return S_OK;

}

Suppose there’s a bug somewhere that causes
 pwork->ReversePolarity() to crash.

Maybe the problem is that the neutrons aren’t flowing,
so there’s no polarity to reverse.

Maybe the polarizer is not property initialized.
Whatever, doesn’t matter what the problem is,

just assume there’s a bug that prevents it from working.

With the global try/except , COM catches the
exception and returns

RPC_E_SERVERFAULT back to the caller.
Your server remains up and running, ready for

another request.
Mind you, your server is also corrupted.
The widget never got unfrobbed,

https://devblogs.microsoft.com/oldnewthing/20110120-00/?p=11713

2/3

the timestamp refers to work that never completed,
and the CWork that you removed from

the pending work list
got leaked.

But, hey, your server stayed up.

A few hours later, the server starts returning E_OUTOFMEMORY
errors (because of all the

leaked work items),
you get errors because there are too many outstanding frobs,
and the

client hangs because it’s waiting for a completion notification
on that work item that you lost

track of.
You debug the server to see why everything is so screwed up,
but you can’t find

anything wrong.
“I don’t understand why we are leaking frobs.
Every time we frob a widget,

there’s a call to unfrob right after it!”

You eventually throw up your hands in resignation.
“I can’t figure it out.
There’s no way we

can be leaking frobs.”

Even worse, the inconsistent object state can be a security hole.
An attacker tricks you into

reversing the polarity of a nonexistent
neutron flow, which causes you to leave the widget

frobbed by mistake.
Bingo, frobbing a widget makes it temporarily exempt from

unauthorized
polarity changes,
and now the bad guys can change the polarity at will.
Now

you have to chase a security vulnerability where widgets
are being left frobbed, and you still

can’t find it.

Catching all exceptions and letting the process continue running
assumes that a server can

recover from an unexpected failure.
But this is absurd.
You already know that the server is

unrecoverably toast: It crashed!

Much better is to let the server crash
so that the crash dump can be captured at the point of

the failure.
Now you have a fighting chance of figuring out what’s going on.

But how do you turn off that massive try/except ?
You didn’t put it in your code; COM

created it for you.

Enter
IGlobalOptions:
Set the COMGLB_EXCEPTION_HANDLING
property to

COMGLB_EXCEPTION_DONOT_HANDLE ,
which means
“Please don’t try to ‘help’ me by catching

all exceptions.
If a fatal exception occurs in my code, then go ahead and let the process

crash.”
In Windows 7, you can ask for the even stronger

COMGLB_EXCEPTION_DONOT_HANDLE_ANY ,
which means
“Don’t even try to catch ‘nonfatal’

exceptions.”

Wait, what’s a ‘fatal’ exception?

A ‘fatal’ exception, at least as COM interprets it,
is an exception like

STATUS_ACCESS_VIOLATION
or STATUS_ILLEGAL_INSTRUCTION .
(A complete list is in this

sample Rpc exception filter.)
On the other hand a ‘nonfatal’ exception is something like
a

C++ exception or a CLR exception.
You probably want an unhandled C++ or CLR exception

http://blogs.msdn.com/oldnewthing/archive/2009/11/13/9921676.aspx
http://msdn.microsoft.com/en-us/library/aa344211(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa379163(VS.85).aspx

3/3

to crash your
server, too; after all, it would have crashed your program if it
weren’t running

as a server.
Therefore, my personal recommendation is to use

COMGLB_EXCEPTION_DONOT_HANDLE_ANY
whenever possible.

“That’s great, but why is the default behavior the dangerous
‘silently swallow exceptions’

mode?”

The COM folks have made numerous attempts to change the default
from the dangerous

mode to one of the safer modes,
but the application compatibility consequences have always

been too great.
Turns out there are a lot of servers that actually rely on COM silently
masking

their exceptions.

But at least now you won’t be one of them.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

