
1/3

January 12, 2011

My, what strange NOPs you have!
devblogs.microsoft.com/oldnewthing/20110112-00

Raymond Chen

While cleaning up my office, I ran across some old documents
which reminded me that there

are a lot of weird NOP instructions
in Windows 95.

Certain early versions of the 80386 processor
(manufactured prior to 1987) are known as
B1

stepping chips.
These early versions of the 80386 had some obscure bugs that
affected

Windows.
For example,
if the instruction following
a string operation (such as movs)
uses

opposite-sized addresses from that in the string instruction
(for example, if you performed a

movs es:[edi], ds:[esi]
followed by a mov ax, [bx])
or if the following instruction

accessed an opposite-sized stack
(for example, if you performed a movs es:[edi], ds:

[esi]
on a 16-bit stack, and the next instruction was a push),
then the movs instruction

would not operate correctly.
There were quite a few of these tiny little
“if all the stars line up

exactly right” chip bugs.

Most of the chip bugs only affected mixed 32-bit and 16-bit operations,
so if you were

running pure 16-bit code or pure 32-bit code,
you were unlikely to encounter any of them.

And since Windows 3.1 did very little mixed-bitness programming
(user-mode code was all-

16-bit and kernel-mode code was all-32-bit),
these defects didn’t really affect Windows 3.1.

Windows 95, on the other hand, contained a lot of mixed-bitness
code since it was the

transitional operating system that brought
people using Windows out of the 16-bit world into

the 32-bit world.
As a result, code sequences that tripped over these little chip
bugs turned up

not infrequently.

An executive decision had to be made whether to continue supporting
these old chips or

whether to abandon them.
A preliminary market analysis of potential customers showed that

there were enough computers running old 80386 chips to be worth
making the extra effort to

support them.

Everybody who wrote assembly language code was alerted to the various
code sequences that

would cause problems on a B1 stepping, so that
they wouldn’t generate those code sequences

themselves, and so they
could be on the lookout for existing code that might have problems.

To supplement the manual scan,
I wrote a program that studied all the Windows 95 binaries

https://devblogs.microsoft.com/oldnewthing/20110112-00/?p=11773

2/3

trying to find these troublesome code sequences.
When it brought one to my attention, I

studied the offending code,
and if I agreed with the program’s assessment, I notified the

developer
who was responsible for the component in question.

In nearly all cases, the troublesome code sequences could be fixed
by judicious insertion of

NOP statements.
If the problem was caused by
“instruction of type X followed by instruction

of type Y”,
then you can just insert a NOP between the two instructions
to “break up the

party” and sidestep the problem.
Sometimes, the standard NOP would end up classified
as

an instruction of type Y,
so you had to insert a special kind of NOP ,
one that was not of

type Y.

For example, here’s one code sequence from a function
which does color format conversion:

 push si ; borrow si temporarily

 ; build second 4 pixels

 movzx si, bl

 mov ax, redTable[si]

 movzx si, cl

 or ax, blueTable[si]

 movzx si, dl

 or ax, greenTable[si]

 shl eax, 16 ; move pixels to high word

 ; build first 4 pixels

 movzx si, bh

 mov ax, redTable[si]

 movzx si, ch

 or ax, blueTable[si]

 movzx si, dh

 or ax, greenTable[si]

 pop si

 stosd es:[edi] ; store 8 pixels

 db 67h, 90h ; 32-bit NOP fixes stos (B1 stepping)

 dec wXE

Note that we couldn’t use just any old NOP ;
we had to use a NOP with a 32-bit address

override prefix.
That’s right, this isn’t just a regular NOP ;
this is a 32-bit NOP .

From a B1 stepping-readiness standpoint,
the folks who wrote in C had a little of the good

news/bad news thing going.
The good news is that the compiler did the code generation and

you
didn’t need to worry about it.
The bad news is that
you also were dependent on the

compiler writers to have
taught their code generator how to avoid these B1 stepping pitfalls,

and some of them were quite subtle.
(For example, there was one bug that manifested itself

in incorrect
instruction decoding if
a conditional branch instruction had just the right

sequence
of taken/not-taken history, and the branch instruction was followed
immediately

by a selector load, and one of the first two
instructions at the destination of the branch was

itself a jump, call,
or return.
The easy workaround: Insert a NOP between the branch
and the

selector load.)

3/3

On the other hand, some quirks of the B1 stepping were easy to sidestep.
For example,
the B1

stepping did not support virtual memory in the first 64KB of memory.
Fine, don’t use virtual

memory there.
If virtual memory was enabled,
if a certain race condition was encountered

inside the hardware
prefetch,
and if you executed a floating point coprocessor instruction

that accessed memory at an address in the range 0x800000F8 through
0x800000FF,
then

the CPU would end up reading from addresses 0x000000F8
through 0x0000000FF instead.

This one was easy to work around:
Never allocate valid memory at 0x80000xxx.
Another

reason for the
no man’s land in the address space near the 2GB boundary.

I happened to have an old computer with a B1 stepping in my office.
It ran slowly, but it did

run.
I think the test team “re-appropriated” the computer for their labs
so they could verify

that Windows 95 still ran correctly on a
computer with a B1 stepping CPU.

Late in the product cycle (after Final Beta),
upper management reversed their earlier decision

and decide not to
support the B1 chip after all.
Maybe the testers were finding too many bugs

where other subtle
B1 stepping bugs were being triggered.
Maybe the cost of having to keep

an eye on all the source code
(and training/retraining all the developers to be aware of B1

issues)
exceeded the benefit of supporting a shrinking customer base.
For whatever reason,

B1 stepping support was pulled,
and customers with one of these older chips got an error

message
when they tried to install Windows 95.
And just to make it easier for the product

support people to recognize
this failure,
the error code for the error message was
Error B1.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2003/10/08/55239.aspx
http://support.microsoft.com/kb/119118
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

