
1/4

January 6, 2011

Processes, commit, RAM, threads, and how high can you
go?

devblogs.microsoft.com/oldnewthing/20110106-00

Raymond Chen

Back in 2008,
Igor Levicki
made a boatload of incorrect assumptions in an attempt to

calculate
the highest a process ID can go on Windows NT.
Let’s look at them one at a time.

So if you can’t create more than 2,028 threads in one process
(because of 2GB per process
limit)
and each process needs at least one thread,
that means you are capped by the amount of
physical RAM available for stack.

One assumption is that each process needs at least one thread.
Really?
What about a process

that has exited?
(Some people call these zombie processes.)
There are no threads remaining

in this process,
but the process object hangs around until all handles are closed.

Next, the claim is that you are capped by the amount of physical
RAM available for stack.

This assumes that stacks are non-pageable,
which is an awfully strange assumption.
User-

mode stacks are most certainly pageable.
In fact, everything in user-mode is pageable unless

you take
special steps to make it not pageable.

Given that the smallest stack allocation is 4KB
and assuming 32-bit address space:

4,294,967,296 / 4,096 = 1,048,576 PIDs

This assumes that all the stacks live in the same address space,
but user mode stacks from

different processes most certainly do not;
that’s the whole point of separate address spaces!

(Okay, kernel stacks live in the same address space, but the discussion
about “initial stack

commit” later makes it clear he’s talking about
user-mode stacks.)

Since they have to be a multiple of 4:

1,048,576 / 4 = 262,144 PIDs

It’s not clear why we are dividing by four here.
Yes,
process IDs are a multiple of four

(implementation detail, not contractual, do not rely on it),
but that doesn’t mean that three

quarters of the stacks are no longer any good.
It just means that we can’t use more than

https://devblogs.microsoft.com/oldnewthing/20110106-00/?p=11813
http://blogs.msdn.com/oldnewthing/archive/2008/02/28/7925962.aspx#7966261
http://blogs.msdn.com/oldnewthing/archive/2004/07/23/192531.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/02/28/7925962.aspx

2/4

4,294,967,296/4 of them
since we’ll run out of names after 1,073,741,824 of them.
In other

words, this is not a division but rather a min operation.
And we already dropped below 1

billion when we counted kernel stacks,
so this min step has no effect.

It’s like saying, “This street is 80 meters long.
The minimum building line is 4 meters, which

means that you can
have at most 20 houses on this side of the street.
But house numbers on

this side of the street must be even,
so the maximum number of houses is half that, or 10.”

No, the requirement that house numbers be even doesn’t cut the number
of houses in half; it

just means you have to be more careful how you
assign the numbers.

Having 262,144 processes would consume 1GB of RAM
just for the initial stack commit
assuming that all processes are single-threaded.
If they commited 1MB of stack each you would
need 256 GB of memory.

Commit does not consume RAM.
Commit is merely a promise from the memory manager

that the RAM will
there when you need it, but the memory manager doesn’t have to
produce

it immediately (and certainly doesn’t have to keep the RAM
reserved for you until you free

it).
Indeed, that’s the whole point of virtual memory,
to decouple commit from RAM!
(If

commit consumed RAM, then what’s the page file for?)

This calculation also assumes that process IDs are allocated
“smallest available first”, but it’s

clear that it’s not as simple
as that:
Fire up Task Manager and look at the highest process ID.

(I’ve got one as high as 4040.)
If process IDs are allocated smallest-available-first, then a

process ID
of 4040 implies that at some point there were 1010 processes in the system

simultaneously!
Unlikely.

Here’s a much simpler demonstration that process IDs are not allocated
smallest-available-

first:
Fire up Task Manager, tell it to Show processes from all users,
go to the Processes tab,

and
enable the PID column if you haven’t already.
Now launch Calc. Look for Calc in the

process list and
observe that it was not assigned the lowest available PID.
If your system is

like mine, you have PID zero assigned to the System
Idle Process (not really a process but it

gets a number anyway),
and PID 4 assigned to the System process (again, not really a process

but it gets a number anyway), and then you have a pretty big gap before
the next process ID

(for me, it’s 372).
And yet Calc was given a process ID in the 2000’s.
Proof by

counterexample that the system does not assign PIDs
smallest-available-first.

So if they aren’t assigned smallest-available-first,
what’s to prevent one from having a

process ID of 4000000000?

(Advanced readers may note that kernel stacks do all share a single
address space, but even

in that case, a thread that doesn’t exist
doesn’t have a stack.
And it’s clear that Igor was

referring to user-mode stacks since he
talked about 1MB stack commits, a value which

applies to user mode
and not kernel mode.)

3/4

Just for fun, I tried to see how high I could get my process ID.

#include <windows.h>

int __cdecl _tmain(int argc, TCHAR **argv)

{

DWORD dwPid = 0;

TCHAR szSelf[MAX_PATH];

GetModuleFileName(NULL, szSelf, MAX_PATH);

int i;

for (i = 0; i < 10000; i++) {

 STARTUPINFO si = { 0 };

 PROCESS_INFORMATION pi;

 if (!CreateProcess(szSelf, TEXT("Bogus"),

 NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL,

 &si, &pi)) break;

 TerminateProcess(pi.hProcess, 0);

 CloseHandle(pi.hThread);

 // intentionally leak the process handle so the

 // process object is not destroyed

 // CloseHandle(pi.hProcess); // leak

 if (dwPid < pi.dwProcessId) dwPid = pi.dwProcessId;

}
_tprintf(_TEXT("\nCreated %d processes, ")

 _TEXT("highest pid seen was %d\n"), i, dwPid);

_fgetts(szSelf, MAX_PATH, stdin);

return 0;

}

In order to get the program to complete before I got bored,
I ran it on a Windows 2000

virtual machine with 128MB of memory.
It finally conked out at 5245 processes with a PID

high water mark
of 21776.
Along the way, it managed to consume 2328KB of non-paged pool,

36KB of paged pool, and 36,092KB of commit.
If you divide this by the number of processes,

you’ll see that
a terminated process consumes about 450 bytes of non-paged pool,
a

negligible amount of paged pool, and 6KB of commit.
(The commit is probably left over page

tables and other detritus.)
I suspect commit is the limiting factor in the number of processes.

I ran the same program on a Windows 7 machine with 1GB of RAM,
and it managed to create

all 10,000 processes with a high process ID
of 44264.
I cranked the loop limit up to 65535,

and it still comfortably
created 65535 processes with a high process Id of 266,232,
easily

exceeding the limit of
262,144 that Igor calculated.

I later learned that the Windows NT folks do try to keep
the numerical values of process ID

from getting too big.
Earlier this century,
the kernel team
experimented with letting the

numbers get really huge,
in order to reduce the rate at which process IDs get reused,
but they

had to go back to small numbers, not for any technical
reasons, but because people

complained that the large process IDs
looked ugly in Task Manager.
(One customer even

asked if something was wrong with his computer.)

4/4

That’s not saying that the kernel folks won’t go back and try
the experiment again someday.

After all, they managed to
get rid of the dispatcher lock.
Who knows what other crazy things

will change next?
(And once they get process IDs to go above 65535—like they
were in

Windows 95, by the way—or
if they decided to make process IDs no
longer
multiples of 4
in

order to keep process IDs low,
this guy’s program
will stop working, and it’ll be Microsoft’s

fault.)

Raymond Chen

Follow

https://channel9.msdn.com/shows/Going+Deep/Arun-Kishan-Farewell-to-the-Windows-Kernel-Dispatcher-Lock/
http://blogs.msdn.com/oldnewthing/archive/2008/02/28/7925962.aspx
http://groups.google.com/group/microsoft.public.win32.programmer.kernel/browse_thread/thread/6326c306e22e05bb/c0fee26e301bbcf2
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

